Problem Set Solutions for the video course "A Mathematics Course for Political and Social Research"

David A. Siegel^{*}

July 30, 2015

^{*}Associate Professor, Department of Political Science, Duke University, Durham, NC 27708; e-mail: david.siegel@duke.edu; web: http://people.duke.edu/~das76.

- 1. Identify whether each of the following is a constant or a variable:
 - (a) Variable.
 - (b) Constant.
 - (c) Variable.
- 2. Identify whether each of the following is a variable or a value of a variable:
 - (a) Value (of the variable Age).
 - (b) Variable (taking the values of candidates or parties).
 - (c) Variable.
 - (d) Value (of the variable Education).
- 3. Identify whether each of the following indicators is measured at a nominal, ordinal, interval, or ratio level. Note also whether each is a discrete or a continuous measure:
 - (a) Ratio, discrete.
 - (b) Nominal, discrete.
 - (c) Ratio, continuous.
 - (d) Ordinal, discrete.
- 4. Let A = (6, 8) and B = [7, 9].
 - (a) Neither.
 - (b) (6,9].
 - (c) [7,8).
 - (d) Any (x, y) in which $x \in (6, 8), y \in [7, 9]$.

5. Simplify or evaluate each of the following:

(a)
$$x^3$$
.
(b) $a(b^3 - a)$.
(c) $4 + 1 - 4(5) = -15$.
(d) 120.
(e) ± 3 .
(f) $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{15}{16}$.
(g) $\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{8} \cdot \frac{1}{16} = \frac{1}{1024}$.
(h) $x(1 + 4(y - 3) + z)$.

6. Ratio: 232:192. Proportion: $\frac{232}{232+192} = \frac{232}{424} \simeq 0.547$ Percentage: $100\% \times (\frac{232}{424}) \simeq 54.7\%$. 7. $100\% \times (\frac{210-192}{192}) \simeq 100\% \times 0.094 = 9.4\%$. 8. $\frac{(x-4)(x+2)}{7(x+2)} = \frac{x-4}{7}$. 9. $\frac{9y-15}{20}$. 10. $16(\phi - 3)(\phi + 5)$. 11. y = 2. 12. x = 4 or x = 3. 13. $x = \frac{5}{4} \pm \frac{\sqrt{5}}{4}$. 14. $\theta > \frac{-1}{2}$.

- 1. For each pair of ordered sets, state whether it represents a function or a correspondence:
 - (a) Function, since no element of the first set maps to more than one element of the second.
 - (b) Correspondence, since the element 3 in the first set maps to three values (10, -5, 1) in the second.

$$f(x) = x^3 - 1$$
, $g(x) = \ln x$, and $h(x) = \frac{1}{x^2}$:

- 2. Simplify or evaluate the following expressions, using $f(x) = x^3 1$, $g(x) = \ln(x)$, and $h(x) = \frac{1}{x^2}$:
 - (a) $(\ln(x))^3 1$.
 - (b) $\ln(\frac{1}{x^2}) = -2\ln(x)$.
 - (c) $\frac{x^3-1}{x^2} = x \frac{1}{x^2}$ (the latter as long as $x \neq 0$).
 - (d) $\frac{\ln(x)}{r^2}$.

(e)
$$(x^{-2})^3 = x^{-6} = \frac{1}{x^6}$$
.

- (f) $\sqrt[3]{x+1}$.
- (g) $\frac{1}{|\sqrt{x}|}$ for x > 0.
- 3. Either find the following limits or show that they do not exist.

(a)
$$-9$$

- (b) 0.
- (c) $\frac{4}{7}$.
- (d) Does not exist (would be $\frac{1}{0}$).
- (e) $\frac{-1}{4}$.
- 4. For each of the following sets, state whether they are (a) open, closed, both, or neither; (b) bounded; (c) compact; (d) convex:
 - (a) (a) neither, (b) bounded, (c) not compact, (d) convex.
 - (b) (a) closed, (b) bounded, (c) compact, (d) convex.
 - (c) (a) neither, (b) bounded, (c) not compact, (d) not convex.
 - (d) (a) open (it's (2,5)), (b) bounded, (c) not compact, (d) convex.
- 5. For each of the following functions, state whether or not it is continuous on the domain provided.
 - (a) Yes.
 - (b) This function is not continuous because it has the value 0 at x = 1, but approaches 2 as it approaches x = 1 from the right. (One could make it continuous by either adding 2 from the equation for all $x \le 1$ (to get x + 1), or by subtracting 2 to the equation for all x > 1 (to get $x^2 2$).

- 1. Use the definition of the derivative to find the derivative of y with respect to x for the following:
 - (a) dy/dx = 0.
 - (b) dy/dx = 2x + 2.
 - (c) $dy/dx = 6x^2 + 10x$.
 - (d) $dy/dx = 8x^3 6x$.
 - (e) $dy/dx = -20x^3 + 6x + 1$.
- 2. For each of the following, find the partial derivative with respect to both x and z.
 - (a) $\frac{\partial f}{\partial x} = 2x, \frac{\partial f}{\partial z} = 4z.$ (b) $\frac{\partial f}{\partial x} = 0, \frac{\partial f}{\partial z} = 3z^2.$ (c) $\frac{\partial f}{\partial x} = z^2, \frac{\partial f}{\partial z} = 2xz.$ (d) $\frac{\partial f}{\partial x} = 3x^2z^2 - 1, \frac{\partial f}{\partial z} = 2x^3z.$

Differentiate the following:

1. $f'(x) = -3x^{-4}$. 2. $f'(x) = 4ax^3$. 3. $f'(x) = \frac{2}{3}x^{-\frac{1}{3}}$ 4. $f'(x) = (1 - 2x)(2x^3 + 5x^2 - 7) + (x - x^2)(6x^2 + 10x)$. 5. $f'(x) = 5(x + 1)^4$. 6. $f'(x) = ((-4x + 3x^2)(x^2 - x) - (-2x^2 + x^3)(2x - 1))/(x^2 - x)^2$. 7. $f'(x) = 3(x^3 - 5)^2(3x^2)$. 8. $f'(x) = (4x^3 - 2x)\ln(x^2 - 5) + \frac{(x^4 - x^2 + 2)(2x)}{x^2 - 5}$. 9. $f'(x) = 3(25x^4 - 2x)e^{5x^5 - x^2}$. 10. $f'(x) = 2xe^x\ln(x) + x^2e^x\ln(x) + xe^x + 15x^4$. 11. $f'(x) = \ln(c)c^{x^3 - 1}(3x^2)$. 12. $f'(x) = \frac{6x^2(\log_c(x)) + 2x^3(\frac{1}{x\ln(c)})}{(\log_c(x))^2}$.

- 1. Integrate the following:
 - (a) $F(x) = \frac{5}{2}x^2 3x + C.$ (b) $F(x) = -\frac{1}{2}x^2 + 5x - \frac{1}{2}x^4 + \frac{1}{6}x^6 + C.$ (c) $F(x) = 2\ln(|x|) + \frac{2}{11}x^{11} + C.$ (d) $F(x) = 2e^{\frac{x}{2}} + C.$ (e) $F(x) = e^{x^5+2} + C.$ (f) $F(x) = \frac{1}{2}(2x\ln(2x) - 2x) + C.$
- 2. Evaluate the following integrals:
 - (a) 0.
 - (b) $9 \frac{45}{2} + 6 \frac{1}{3} + \frac{5}{2} 2 + \frac{125}{3} \frac{125}{2} + 10 9 + \frac{45}{2} 6 = \frac{125}{3} \frac{125}{2} + 10 \frac{1}{3} + \frac{5}{2} 2$. Note the integrals evaluated at x = 3 cancel. This is $\frac{124}{3} - 60 + 8 = -10\frac{2}{3}$.
 - (c) $\frac{125}{3} \frac{125}{2} + 10 \frac{1}{3} + \frac{5}{2} 2 = -10\frac{2}{3}$, the same as for the previous question.

(d)
$$(x \ln(x) - x - \frac{2}{3}x^{\frac{3}{2}})|_{1}^{e}$$
. This is $e - e - \frac{2}{3}e^{\frac{3}{2}} - 0 + 1 + \frac{2}{3} = 1 - \frac{2}{3}(e^{\frac{3}{2}} - 1)$.
(e) $\frac{4}{3}(\sqrt{2x^{2} + 6x + 1})^{3} + C$.
(f) $x^{2}e^{x} - 2(xe^{x} - e^{x}) + C = e^{x}(x^{2} - 2x + 2) + C$.

Find all extrema (local and global) of the following functions on the specified domains, and state whether each extremum is a minimum or maximum and whether each is only local or global on that domain.

- 1. Global minimum at $x^* = -5$, global maximum at the boundary x = 10.
- 2. Global minimum at x = 0, global maximum at x = 1.
- 3. Global minimum at $x^* = 0$, global maximum at $x^* = 1$.
- 4. Global maximum at $x^* = \frac{1}{2}$, global minimum at x = 10.
- 5. Global maximum at $x^* = -2$, global minimum at $x^* = 2$.
- 6. Three stationary points at $x^* = -2, -1, 1$. Global minimum at $x^* = 1$, global maximum at x = 2, local maximum at $x^* = -1$, local minimum at $x^* = -2$.

- 1. Identify each of the following as a *classical* (objective), *empirical* (objective), or *subjective* probability claim:
 - (a) *Empirical* (objective).
 - (b) *Classical* (objective).
 - (c) *Subjective* (presumably not based on a forecasting model).
- 2. Identify the following as simple or compound events:
 - (a) Simple.
 - (b) Compound.
 - (c) Compound.
 - (d) Simple.
- 3. Characterize the following as independent, mutually exclusive, and/or collectively exhaustive:
 - (a) Mutually exclusive and collectively exhaustive values of a variable.
 - (b) Independent.

- (c) Mutually exclusive values of a variable.
- 4. Let Pr(a) = 0.45, Pr(b) = 0.22, and Pr(c) = 0.31,
 - (a) .02.
 - (b) 0.67.
 - (c) 0.
 - (d) 0.0682.
 - (e) 0.37.
 - (f) $\frac{.6-.45}{1-.45} = 0.273$
 - (g) $\frac{.8-.45}{1-.45} = 0.636$
- 5. Compute each of the following:
 - (a) 360.
 - (b) 90.
 - (c) $\frac{1}{10}$.
 - (d) 35.
 - (e) 28.
 - (f) 210.
 - (g) 20160.
- 6. A committee contains ten legislators with six men and four women. Find the number of ways that a delegation of five:
 - (a) This is the number of ways 5 elements can be chosen from 10, or $\binom{10}{5} = 252$.
 - (b) We have the joint probability of two independent events: choosing 2 women from 4 and 3 men from 6. This is: $\binom{6}{3}\binom{4}{2} = 20 * 6 = 120$.
 - (c) There are two ways to do this: have 3 women or have 4 women on the committee. We add the number of ways that each can occur. For three women: $\binom{6}{2}\binom{4}{3} = 15 * 4 = 60$. For four women: $\binom{6}{1}\binom{4}{4} = 6 * 1 = 6$. So the total is 66.
- 7. $\frac{27}{64}$.
- 8. $\frac{1}{36}, \frac{1}{9}$.
- 9. In one legislature, 20% of the legislators are conservatives, 20% are liberals, and 60% are independents. In a recent vote to expand counterinsurgency operations, 80% of conservatives, 20% of liberals, and 50% of independents voted in favor.
 - (a) Pr(V) = Pr(V|C)Pr(C) + Pr(V|L)Pr(L) + Pr(V|I)Pr(I) = .8 * .2 + .2 * .2 + .6 * .5 = 0.5.

(b)
$$Pr(C|V) = \frac{PR(V|C)Pr(C)}{PR(V)} = \frac{(.8)(.2)}{.5} = 0.32.$$

(c) 0.08.
(d) 0.6.

- 10. $0.4/0.6 \rightarrow 2:3$ or .667:1.
- 11. (2/1)/(1/4) = 8.
- 12. An unemployed person is 118% more likely than an employed person, and someone with a college education is 55% less likely than a person with only a high school education, to vote for the National Front.

- 1. We use a Poisson distribution with these data: $\frac{10^{15}}{e^{10}15!} = 0.035$.
- 2. We use a binomial distribution: $\binom{25}{15}(.2)^{15}(.8)^{10} = .00001.$
- 3. We use a negative binomial distribution:

$$P(Y = 3|2, 0.2) = {\binom{3+2-1}{3}} \cdot 2^3 (1-.2)^2$$
$$= {\binom{4}{3}} \times \cdot .008 \times \cdot .64$$
$$= \frac{4!}{(3!)(1!)} \times \cdot .00512$$
$$= 4 \times \cdot .00512$$
$$= 0.02.$$

4. Bach: EU(B) = p(B)EU(BT) + (1 - p(B))EU(BA), where B is Bach, T is Together and A is alone.
EU(B) = .2(12) + .8(2) = 2.4 + 1.6 = 4.
EU(S) = p(B)EU(SA) + (1 - p(B))EU(ST), where S is Stravinsky.
EU(S) = .2(-2) + .8(6) = -.4 + 4.8 = 4.4.
So she should choose Stravinsky because 4.4 > 4, even though she personally likes

Bach much better.

5. First we use Bayes' rule to figure out the posterior probability of B's being strong after A observes maneuvers. This is $Pr(S|M) = \frac{Pr(M|S)Pr(S)}{Pr(M|S)Pr(S)+Pr(M|W)Pr(W)} = \frac{(.8)(.2)}{(.8)(.2)+(.1)(.8)} = \frac{2}{3}$. Next we ask what this posterior probability must be for A to want to start a war. This is an expected utility comparison. A gets 0 for doing nothing, and expects to get Pr(S|M) * (-1) + (1 - Pr(S|M)) * (1) for starting a war after observing maneuvers. This becomes $-\frac{2}{3} + \frac{1}{3} = -\frac{1}{3} < 0$, so A would prefer not to start a rebellion after observing maneuvers, despite having an initially low prior belief about the strength of the state. This is because the maneuvers are very informative.

1. This is:

$$\begin{split} &\int_{-\infty}^{\infty} (x-\mu)^3 f(x) dx \\ &= \int_0^1 (x^3 - 3\mu x^2 + 3\mu^2 x - \mu^3) dx \\ &= \left(\frac{1}{4}x^4 - \mu x^3 + \frac{3}{2}\mu^2 x^2 - \mu^3 x\right) |_0^1 \\ &= \left(\frac{1}{4} - \mu + \frac{3}{2}\mu^2 - \mu^3\right) \\ &= \left(\frac{1}{4} - \frac{1}{2} + \frac{3}{2}\frac{1}{4} - \frac{1}{8}\right) \\ &= 0. \end{split}$$
(1)

- 2. Assume a policy outcome, x, depends on a choice of policy, p, and an exogenous economic shock, ϵ , so that $x = p + \epsilon$. Further assume that ϵ is distributed uniformly on [-1, 1].
 - (a) 0.
 - (b) No, still 0.
 - (c) It decreases. At p = 0, for [-1,1]: $\int_{-1}^{1} \frac{1}{2}(-\epsilon^2)d\epsilon = -\frac{1}{6}\epsilon^3|_{-1}^1 = \frac{1}{6}(-1-1) = -\frac{1}{3}$. For [-2,2]: $\int_{-2}^{2} \frac{1}{4}(-\epsilon^2)d\epsilon = -\frac{1}{12}\epsilon^3|_{-2}^2 = \frac{1}{12}(-8-8) = -\frac{16}{12} = -\frac{4}{3}$. She is effectively risk averse around her ideal point of zero, so prefers the less uncertain case.

3.
$$\int_{100}^{600} \frac{1}{600-100} x dx = \frac{360000-10000}{1000} = 350.$$

4. It would not change. It would still be equal to the midpoint of the distribution, which is still 350. A risk neutral person cares only about the expected value of the lottery.

5.
$$\int_{100}^{600} \frac{1}{600-100} \sqrt{x} dx = \frac{2}{3} \frac{600^{3/2} - 100^{3/2}}{500} = 18.3.$$

6. $\int_{200}^{500} \frac{1}{500-200} \sqrt{x} dx = \frac{2}{3} \frac{500^{3/2}-200^{3/2}}{300} = 18.6$ This is greater than before; she is risk averse, and prefers the less risky lottery to the more risky lottery, given equal expected values of the lotteries.

10 Lecture 10

1. Let:
$$\mathbf{a} = \begin{pmatrix} 4 \\ 1 \\ -5 \\ 3 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 2 \\ 5 \\ 5 \\ 2 \end{pmatrix}$, $\mathbf{c} = (1, 1, 3)$, $\mathbf{d} = (6, 4, 2)$, and $\mathbf{e} = (10, 20, 30, 40)^T$.

Calculate each of the following, indicating that it's not possible if there is a calculation you cannot perform.

(a)
$$\begin{pmatrix} 6\\6\\0\\5 \end{pmatrix}$$
.

(b)
$$\begin{pmatrix} -8\\ -15\\ -25\\ -38 \end{pmatrix}$$
.

(c) Not possible to add because they have different dimensions.

(d)
$$\begin{pmatrix} 24\\ 6\\ -30\\ 18 \end{pmatrix}$$
.
(e) $\sqrt{4+16+100+1} = 11.$
(f) $(1)(6) + (1)(4) + (3)(2) = 16.$
(g) 380.

- 2. Identify the following matrices as diagonal, identity, square, symmetric, triangular, or none of the above (note all that apply).
 - (a) This is a square, (lower) triangular matrix.
 - (b) This matrix has none of these properties.
 - (c) This is a symmetric, square matrix.
- 3. Write down the transpose of matrices A through C from the previous problem.

(a)
$$A^{T} = \begin{bmatrix} 1 & 4 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$$
.
(b) $B^{T} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 5 & 6 \\ 7 & -3 \end{bmatrix}$.
(c) $C = \begin{bmatrix} 10 & 5 & 2 \\ 5 & -3 & 7 \\ 2 & 7 & -9 \end{bmatrix}$.

4. Given the following matrices, perform the calculations below.

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 5 & 2 \end{bmatrix} B = \begin{bmatrix} 2 & 4 \\ 2 & 8 \\ -5 & 2 \end{bmatrix} C = \begin{bmatrix} 5 & 0 \\ 3 & 6 \end{bmatrix}$$

(a) Not possible to add because they have different dimensions.

(b) $\begin{bmatrix} 2 & 2 & -5 \\ 4 & 8 & 2 \end{bmatrix}$.

(c)
$$\begin{bmatrix} 1 & -2 & 6 \\ -4 & -3 & 0 \end{bmatrix}$$
.
(d) $\begin{bmatrix} 9 & 0 & 3 \\ 0 & 15 & 6 \end{bmatrix}$.
(e) Cannot multiply due to incompatible dimensions.
(f) $\begin{bmatrix} 1 & 14 \\ 0 & 44 \end{bmatrix}$.
(g) $\begin{bmatrix} 6 & 20 & 10 \\ 6 & 40 & 18 \\ -15 & 10 & -1 \end{bmatrix}$.
(h) $\begin{bmatrix} 1 & 0 \\ 14 & 44 \end{bmatrix}$.
(i) $\begin{bmatrix} 1 & 0 \\ 14 & 44 \end{bmatrix}$.
(j) 11.

- 5. Find the determinants and, if they exist, the inverses of the following matrices:
 - (a) $Det(A) = 26. A^{-1} = \frac{1}{26} \begin{bmatrix} 7 & -8 \\ -2 & 6 \end{bmatrix}.$
 - (b) Det(B) = 0. No inverse exists because the matrix is singular by virtue of its determinant of zero.
 - (c) Det(C) = (3)(12 20) (2)(4 4) + (1)(10 6) = -24 0 + 4 = -20. $M_{11} = -8, M_{12} = 0, M_{13} = 4, M_{21} = -1, M_{22} = 5, M_{23} = 13, M_{31} = 2, M_{32} = 10, M_{33} = 14.$

(d)
$$C^{-1} = \frac{-1}{20} \begin{bmatrix} -8 & 1 & 2\\ 0 & 5 & -10\\ 4 & -13 & 14 \end{bmatrix}$$
.

(e) We cannot take the determinant of a matrix that is not square, and so we cannot find its inverse.

11 Lecture 11

1. Let: $\mathbf{a} = \begin{pmatrix} 4 \\ 1 \\ -5 \\ 3 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 5 \\ 5 \\ 2 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} 2 \\ -4 \\ -10 \\ 1 \end{pmatrix}$, and $\mathbf{d} = \begin{pmatrix} 4 \\ 10 \\ 10 \\ 4 \end{pmatrix}$. Answer each of the

following questions, saying that it's not possible if there is a calculation you cannot perform.

(a)
$$s\mathbf{a} + t\mathbf{b} = \begin{pmatrix} 4s + 2t \\ s + 5t \\ -5s + 5t \\ 3s + 2t \end{pmatrix}$$

- (b) No, only two at most are. For example, one can write $\mathbf{d} = 2\mathbf{b}$ and $\mathbf{c} = \mathbf{a} \mathbf{b}$.
- (c) These span a two-dimensional space, as there are two, and only two, linearly independent vectors. (If you wrote c and d in terms of a and b in the previous problem, then the latter two vectors are independent and span a two-dimensional space.)
- 2. Solve the following systems of equations using substitution or elimination, or both:
 - (a) x = 2, y = 6, z = 7.
 - (b) x = 1, y = 2, z = 3.
 - (c) x = x, y = 2 x, z = 3 2x. The third equation is a multiple of the first equation, so we only have two equations in three unknowns. To solve, we leave x as a parameter and solve for y and z in terms of x to get this answer.
 - (d) The first and second equations are contradictory, as the first implies 4x-4y-2z = 9 rather than = 10 as the second one states. Thus these equations have no solutions.
- 3. Let $A = \begin{pmatrix} 5 & 0 \\ 3 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$, and $\mathbf{c} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Calculate each of the following, indicating that it's not possible if there is a calculation you cannot perform.
 - (a) A is full rank (2) as its determinant is non-zero and so it is non-singular.
 - (b) *B* has rank 1. It is singular, so its columns (or rows) are linearly dependent. Removing one of them leaves one linearly independent column (or row), making its rank 1.

(c)
$$A^{-1} = \frac{1}{30} \begin{pmatrix} 6 & 0 \\ -3 & 5 \end{pmatrix}$$
, and $A^{-1}\mathbf{c} = \frac{1}{30} \begin{pmatrix} 6 \\ 12 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \\ \frac{2}{5} \\ \frac{2}{5} \end{pmatrix}$.

(d) Since B has determinant 0 it is singular, and does not have an inverse. Thus we can't use matrix inversion. As one of the rows is a multiple of the other we only have one unique equation for two variables, indicating an infinite number of solutions to the system of equations represented by the matrix.

4.
$$\det(A) = -12$$
, $\det(B_1) = -48$, $\det(B_2) = -24$, $\det(B_3) = -12 \Rightarrow x = 4, y = 2, z = 1$.

1.
$$\lambda = 3, -1$$
, associated eigenvectors $\begin{pmatrix} 1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\-1 \end{pmatrix}$. Let $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1&1\\1&-1 \end{pmatrix}$, so $Q^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1&1\\1&-1 \end{pmatrix}$. Now $A = QDQ^{-1}$ so $D = Q^{-1}AQ = \begin{pmatrix} 3&0\\0&-1 \end{pmatrix}$, as required.

- 2. First we find the eigenvalues. $A \lambda I = \begin{pmatrix} 2 \lambda & 1 & 0 \\ 0 & 1 \lambda & 0 \\ 0 & 1 & 0 \lambda \end{pmatrix}$. $|A \lambda I| = (2 \lambda)(1 \lambda)$
 - λ)($-\lambda$). Setting this equal to zero gives the three eigenvalues $\lambda = 0, 1, 2$. Next we find the eigenvectors. For each eigenvalue we solve the equation $A\mathbf{x} = \lambda \mathbf{x}$ where we let $\mathbf{x} = \begin{pmatrix} 1 \\ a \\ b \end{pmatrix}$, moving around the location of the 1 if we get a contradiction. This produces a system of three equations for each eigenvalue that look like: $2+a = \lambda, a = \lambda a, a = \lambda b$. For $\lambda = 2$, the first equation yields a = 0, the second a = 2a, and the third a = 2b. The solution to these equations set a = b = 0, so the corresponding eigenvector is $\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. For $\lambda = 1$, the first equation yields a = -1, the second a = a, and the third a = b. The solution to these equations set a = b = -1, so the corresponding eigenvector is $\mathbf{x} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$. For $\lambda = 0$, the first two equations are contradictory, so $\begin{pmatrix} a \end{pmatrix}$

 $\langle -1/$ we try a different location for the 1 in the eigenvector. We'll try $\mathbf{x} = \begin{pmatrix} a \\ b \\ 1 \end{pmatrix}$. Now the system of three equations is 2a + b = 0, b = 0, b = 0. The solution to this set of equations is a = b = 0, so the corresponding eigenvector to 0 is $\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

- 3. Yes, it is ergodic because it is aperiodic and all states communicate. To find the steady state π , we solve $M\pi = \pi$, where $\pi = \begin{pmatrix} 1 \\ a \end{pmatrix}$. This matrix equation yields the system of equations .75 + .8a = 1, .25 + .2a = a which has the unique solution $a = \frac{5}{16}$. Thus our steady state is $\begin{pmatrix} 1 \\ \frac{5}{16} \end{pmatrix}$ or, after normalizing it, $\begin{pmatrix} \frac{16}{21} \\ \frac{5}{21} \end{pmatrix}$.
- 4. Yes, it is ergodic because it is aperiodic and the first state is a distinguished state, reachable with positive probability from all other states. To find the steady state π , we solve $M\pi = \pi$, where $\pi = \begin{pmatrix} 1 \\ a \\ b \end{pmatrix}$. This matrix equation yields the system of equations 1 + .75a + .5b = 1, .25a = a, and .5b = b which has the unique solution a = 0, b = 0. Thus our steady state is $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, as suggested by the form of the transition matrix, which basically "transfers" all probability to the first, distinguished state, which is an absorbing state.

1. The partial derivatives are, respectively, $\beta_1 + \beta_3 x_2^2$ and $\beta_2 + 2\beta_3 x_1 x_2$. They correspond to the marginal effects of, respectively, x_1 and x_2 , holding all other variables constant. Note that the model is non-linear in both variables. The marginal effect of x_1 depends on the value of x_2 in a substantial way, increasing rapidly as x_2 moves away from zero in either direction. The marginal effect of x_2 depends on the values of both x_2 and x_1 , implying an even more complex effect.

2.
$$\frac{\partial f}{\partial x_1} = 3x_2 e^{x_1 x_2} - \frac{3x_3}{x_1} + \frac{2x_1 e^{x_3}}{\ln x_2} + \frac{\partial f}{\partial x_2} = 3x_1 e^{x_1 x_2} - \frac{x_1^2 e^{x_3}}{x_2 (\ln x_2)^2} + \frac{\partial f}{\partial x_3} = -\ln x_1^3 + \frac{x_1^2 e^{x_3}}{\ln x_2} + \frac{\partial f}{\partial x_3} = -\ln x_1^3 + \frac{x_1^2 e^{x_3}}{\ln x_2} + \frac{\partial f}{\partial x_3} = -\ln x_1^3 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + x_2 + \frac{\partial f}{\partial x_3} = -x_1 x_3^{x_1 - 1} + \frac{\partial f}{\partial x_3} =$$

4. First do the integral over x, because the bounds of the inner integral contains an y. So $\int_1^y x^2 dy = \frac{1}{3}x^3|_1^y = \frac{1}{3}[y^3 - 1]$. Now do the outer integral over y. This is $\frac{1}{3}\int_0^2 y^2[y^3 - 1]dy = \frac{1}{3}\int_0^2 (y^5 - y^2)dy$. This equals $\frac{1}{3}(\frac{1}{6}(2^6 - 0) - \frac{1}{3}(2^3 - 0)) = \frac{8}{3}$.

14 Lecture 14

$$1. \ \frac{\partial f}{\partial x} = 2xz. \ \frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \frac{dz}{dx} = 2xz + x^2 (\frac{3}{x} + e^y).$$

$$2. \ \nabla f = \begin{pmatrix} 16xe^{yz} \\ 8x^2 z e^{yz} \\ 8x^2 y e^{yz} \end{pmatrix}.$$

$$3. \ H = \begin{pmatrix} 16e^{yz} & 16xze^{yz} & 16xye^{yz} \\ 16xze^{yz} & 8x^2z^2e^{yz} & 8x^2e^{yz}(1+yz) \\ 16xye^{yz} & 8x^2e^{yz}(1+yz) & 8x^2y^2e^{yz} \end{pmatrix}.$$
At the point (1, 1, 1) this is $H = \begin{pmatrix} 16e & 16e \\ 16xye^{yz} & 8x^2e^{yz}(1+yz) & 8x^2y^2e^{yz} \\ 16xze^{yz} & 8x^2e^{yz}(1+yz) & 8x^2y^2e^{yz} \end{pmatrix}.$
The eigenvalues of this matrix are $0, 2(1+\sqrt{2}), 2(1-\sqrt{2})$. Since these signs change, the matrix is indeterminate and we have a saddle point.

4.
$$J = \begin{pmatrix} 2z & 0 & 2x \\ 0 & z & y \\ y^3 & 3xy^2 & 0 \end{pmatrix}.$$

15 Lecture 15

1. $(x^*, y^*) = (5, 1)$ is the only critical point, and it is a minumum.

2.
$$x^* = 1, y^* = 4, \lambda^* = 4.$$

3. $x^* = 1, y^* = \frac{1}{2}, \lambda^* = 2.$
4. $x^* = 1, y^* = 2.$

- 1. This is $\frac{dx^*(b)}{b} = 4b^3 + 2b$.
- 2. Write $f = (\ln(bx^*(b) + 1))^2 x^*(b) = 0$, so the implicit function theorem says that $\frac{\partial x^*(b)}{\partial b} = \frac{-\frac{\partial f}{\partial b}}{\frac{\partial f}{\partial x}}$. $\frac{\partial f}{\partial b} = 2(\ln(bx^*(b) + 1))\frac{x^*(b)}{bx^*(b)+1}$, $\frac{\partial f}{\partial x} = 2(\ln(bx^*(b) + 1))\frac{x^*(b)}{bx^*(b)+1} 1$, so $\frac{\partial x^*(b)}{\partial b} = -\frac{2(\ln(bx^*(b)+1))\frac{x^*(b)}{bx^*(b)+1} 1}{2(\ln(bx^*(b)+1))\frac{x^*(b)}{bx^*(b)+1} 1}$.
- 3. So

$$f_1 = \frac{\partial u_1}{\partial x_1} = x_2 - 2c_1 x_1 = 0$$

$$f_2 = \frac{\partial u_2}{\partial x_2} = x_1 - 2c_2 x_2 = 0.$$

Now we can apply the implicit function theorem in more than one dimension. We need to compute two Jacobians. The first is with respect to **b**: $J_{\mathbf{x}}$. This is

$$\begin{pmatrix} -2c_1 & 1\\ 1 & -2c_2 \end{pmatrix}.$$

We need the inverse of this matrix, so we first compute the determinant: $4c_1c_2 - 1$. Now we can find the inverse:

$$J_{\mathbf{b}}^{-1} = \frac{1}{4c_1c_2} \begin{pmatrix} -2c_2 & -1\\ -1 - 2c_1 & \end{pmatrix}$$

Finally, we need to find the second Jacobian, $J_{\mathbf{c}} = \begin{pmatrix} -2x_1 & 0\\ 0 & -2x_2 \end{pmatrix}$.

We can put these together to get:

 $J_{\mathbf{x}^*(\mathbf{c})} = \frac{-1}{4c_1c_2-1} \begin{pmatrix} 4c_2x_12x_2\\ 2x_1 & 4c_1x_2 \end{pmatrix}$. If the costs are sufficiently high then each person's choice decreases in both people's costs. However, if they are sufficiently low $(4c_1c_2 < 1)$, then each person's choice increases in both costs. This kind of result indicates the power of considering both choices at the same time.