Targeting EGFR in Inflammatory Breast Cancer

Naoto T. Ueno, MD, PhD, FACP
Professor of Medicine
Executive Director, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic
Chief, Section of Translational Breast Cancer Research Enhanced Drug-Development Guide & Evaluation (EDGE) Preclinical Solutions
Department of Breast Medical Oncology

Teamoncology
Naoto Ueno
Why EGFR as a target in IBC?

- Hyperactivation of interferon-α & hypoactivation of EGFR and TGF-β were markedly associated with pCR in IBC.
- In a preclinical IBC model, treatment with an EGFR inhibitor reversed the mesenchymal phenotype of IBC cells to an epithelial phenotype and inhibited tumor growth and metastatic progression.
- In a HR+ IBC preclinical model, bisphenol A activated EGFR and elicited ERK signaling, leading to tumor spheroid formation and resistance to EGFR inhibition.

Bertucc F et al. Ann Oncol 2014;25358-365
Sauer et al. Carcinogenesis 38, 2017;252
EGFR as a therapeutic target in IBC

- EGFR overexpression was detected in 30% of IBC.
- Expression of EGFR is associated with poor outcome and high risk of recurrence.

EGFR targeting therapy

EGFR-targeted therapy reversed EMT

Graphical Data

Tumor Volume

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of Mice</th>
<th>Incidence of lung metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>control (vehicle)</td>
<td>3 of 7</td>
<td>(43%)</td>
</tr>
<tr>
<td>25 mg/kg erlotinib</td>
<td>0 of 7</td>
<td>(0%)</td>
</tr>
<tr>
<td>50 mg/kg erlotinib</td>
<td>0 of 7</td>
<td>(0%)</td>
</tr>
<tr>
<td>100 mg/kg erlotinib</td>
<td>0 of 7</td>
<td>(0%)</td>
</tr>
</tbody>
</table>

Cancer stem cells mediate metastasis and poor clinical outcome in IBC

Development of novel therapies targeting IBC CSCs will improve outcomes of patients with this disease.

Charafe-Jauffret E, et. al., Clin Cancer Res. 2009; 16(1):45-55
Inactivation of EGFR signaling reduces the IBC CSC markers

Inactivation of EGFR signaling

SUM149

Mammosphere formation

ALDH activity

CD44^+ / CD24^- subpopulation
The COX-2 inflammatory pathway is functionally linked to EGFR signaling in IBC.

COX-2 mediates the EGFR-regulated CSC phenotype in IBC cells

Nodal is a potential downstream molecule that mediates EGFR/COX-2-regulated IBC CSC

EGFR regulates Nodal signaling in IBC

Phase II Study of Neoadjuvant Panitumumab + Chemotherapy with low HER2 IBC

Primary Objective: pCR
Secondary Objective: EGFR Expression
Exploratory Objective: Monitoring Dynamic Change of Genomic under Panitumumab monotherapy

Tissue Biopsy
- IHC staining
- RNA sequencing

PaCT
- Panitumumab
- Nab-paclitaxel
- Carboplatin

FEC* 4 cycles

JAMA Oncology in press
Recruitment n=47

Screen failure n=7

Operation complete n=37

Discontinued chemotherapy with adverse events 2
Due to distant metastasis 1

JAMA Oncology in press
<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Weekly (n=17), number (%)</th>
<th>3 weeks on 1 week off (n=23), number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1</td>
<td>Grade 2</td>
</tr>
<tr>
<td>Hematological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenia</td>
<td>0</td>
<td>3 (18)</td>
</tr>
<tr>
<td>Leucopenia</td>
<td>0</td>
<td>12 (71)</td>
</tr>
<tr>
<td>Anemia</td>
<td>0</td>
<td>5 (29)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nonhematological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin rash</td>
<td>5 (29)</td>
<td>7 (41)</td>
</tr>
<tr>
<td>Skin peeling</td>
<td>3 (18)</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Hand-foot reaction</td>
<td>3 (18)</td>
<td>2 (12)</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>4 (24)</td>
<td>5 (29)</td>
</tr>
<tr>
<td>Alopecia</td>
<td>2 (12)</td>
<td>12 (71)</td>
</tr>
<tr>
<td>Nausea</td>
<td>7 (41)</td>
<td>3 (18)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3 (18)</td>
<td>3 (18)</td>
</tr>
<tr>
<td>Constipation</td>
<td>6 (35)</td>
<td>3 (18)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2 (12)</td>
<td>9 (53)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>9 (53)</td>
<td>2 (12)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>6 (35)</td>
<td>2 (12)</td>
</tr>
<tr>
<td>Mucositis</td>
<td>3 (18)</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Infection</td>
<td>0</td>
<td>2 (12)</td>
</tr>
<tr>
<td>Paresthesia</td>
<td>2 (12)</td>
<td>3 (18)</td>
</tr>
</tbody>
</table>

CTCAE, Common Terminology Criteria for Adverse Events.

A Adverse events possibly, probably, or definitely related to treatment with PNC regimen (panitumumab, nab-paclitaxel, and carboplatin) or FEC regimen (5-fluorouracil, epirubicin, and cyclophosphamide).
Treatment Response to PaCT/FEC

<table>
<thead>
<tr>
<th>Pathological response</th>
<th>N=37 (%)</th>
<th>Non-pCR (n=26)</th>
<th>pCR (n=11)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TNBC</td>
<td>HR+</td>
</tr>
<tr>
<td>RCB-0 (pCR)</td>
<td>11 (30)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RCB-I</td>
<td>3 (8)</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>RCB-II</td>
<td>10 (27)</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>RCB-III</td>
<td>13 (35)</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>TNBC (n=17)</th>
<th>ER+/HER2- (n=20)</th>
<th>ER+/HER2+</th>
<th>ER-/HER2+</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCR rate</td>
<td>47% (8/17)</td>
<td>15% (3/20)</td>
<td>Not Eligible</td>
<td>Not Eligible</td>
<td>30% (11/37)</td>
</tr>
<tr>
<td>pCR/RCB-I rate</td>
<td>65% (11/17)</td>
<td>15% (3/20)</td>
<td>Not Eligible</td>
<td>Not Eligible</td>
<td>38% (14/37)</td>
</tr>
</tbody>
</table>

JAMA Oncology in press
Comparison to Historical Data

<table>
<thead>
<tr>
<th></th>
<th>TNBC</th>
<th>ER+/HER2-</th>
<th>ER+/HER2+</th>
<th>ER-/HER2+</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-IBC Historic pCR</td>
<td>30-40%</td>
<td>7-16%</td>
<td>35%</td>
<td>40-60%</td>
<td></td>
</tr>
<tr>
<td>IBC pCR with standard chemo</td>
<td>12%</td>
<td>7%</td>
<td>30%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>pCR with PaCT</td>
<td>44% (60%)</td>
<td>17%</td>
<td>Not Eligible</td>
<td>Not Eligible</td>
<td>36%</td>
</tr>
</tbody>
</table>

JAMA Oncology in press

Primary HER2-negative IBC

- **Weeks 1-13**
 - **Weeks 1-4:** Panitumumab, Nab-paclitaxel, Carboplatin
 - **Weeks 5-12:** Standard of care: FEC* (Fluorouracil, Epirubicin, Cyclophosphamide) every 3 weeks
 - **Week 13:** Biopsy

*FEC: Fluorouracil (500 mg/m²), Epirubicin (100 mg/m²), Cyclophosphamide (500 mg/m²), every 3 weeks

Biomarker Study

- Biopsy: EGFR, pEGFR, pAKT, pMAPK, p27, EMT markers
- RNA-seq
- Multiplex imaging

JAMA Oncology in press
Expression of Candidate Proteins at Baseline and Week 2 and Change in Expression of Candidate Proteins between Baseline and Week 2 by Patient pCR Status

<table>
<thead>
<tr>
<th>Variable</th>
<th>No pCR (N=26)</th>
<th>pCR (N=11)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>18 0 (0-300)</td>
<td>5 120 (0-300)</td>
<td>.14</td>
</tr>
<tr>
<td>Week 2</td>
<td>3 285 (20-300)</td>
<td>4 105 (10-285)</td>
<td>.48</td>
</tr>
<tr>
<td>Change</td>
<td>3 0 (0-265)</td>
<td>2 7.5 (-15-30)</td>
<td>.77</td>
</tr>
<tr>
<td>pEGFR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>7 60 (20-300)</td>
<td>4 160 (160-300)</td>
<td>.05</td>
</tr>
<tr>
<td>Week 2</td>
<td>6 225 (30-300)</td>
<td>4 110 (0-240)</td>
<td>.28</td>
</tr>
<tr>
<td>Change</td>
<td>6 185 (-30-280)</td>
<td>4 -50 (-300-80)</td>
<td>.09</td>
</tr>
<tr>
<td>E-cadherin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>12 170 (0-300)</td>
<td>7 5 (0-300)</td>
<td>.49</td>
</tr>
<tr>
<td>Week 2</td>
<td>6 300 (300-300)</td>
<td>4 300 (180-300)</td>
<td>.31</td>
</tr>
<tr>
<td>Change</td>
<td>6 90 (0-300)</td>
<td>4 89.5 (0-300)</td>
<td>1.00</td>
</tr>
<tr>
<td>Vimentin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>9 0 (0-210)</td>
<td>7 30 (0-60)</td>
<td>.31</td>
</tr>
<tr>
<td>Week 2</td>
<td>5 15 (0-270)</td>
<td>4 40 (5-270)</td>
<td>.38</td>
</tr>
<tr>
<td>Change</td>
<td>4 9.5 (0-110)</td>
<td>4 25 (-25-210)</td>
<td>.66</td>
</tr>
<tr>
<td>COX-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>12 115 (0-300)</td>
<td>7 240 (150-300)</td>
<td>.05</td>
</tr>
<tr>
<td>Week 2</td>
<td>6 200 (80-300)</td>
<td>4 160 (80-300)</td>
<td>.66</td>
</tr>
<tr>
<td>Change</td>
<td>6 15 (-140-240)</td>
<td>4 -85 (-160-140)</td>
<td>.59</td>
</tr>
<tr>
<td>Nodal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>11 240 (70-300)</td>
<td>7 285 (80-300)</td>
<td>.58</td>
</tr>
<tr>
<td>Week 2</td>
<td>6 250 (0-300)</td>
<td>4 180 (160-300)</td>
<td>.91</td>
</tr>
<tr>
<td>Change</td>
<td>5 0 (-100-120)</td>
<td>4 0 (-100-80)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Gene expression in patient samples was measured by immunohistochemical staining before (baseline) and after (week 2) the first dose of PmAb.
Genes differentially expressed after PmAb treatment by RNA-Seq analysis

Candidates of PmAb-regulated genes in IBC patients with TN-IBC

Molecular and cellular function of PmAb-regulated genes in IBC patients with HR+/HER2- subtype

Genes whose change in expression after PmAb treatment predicting pCR status have not been identified yet.
Conclusions and Future Directions

Inflammation and cancer stem cells

Predictive biomarker

Tumor microenvironment

Panitumumab clinical trials
- Single-arm trial in patients with HER2-negative IBC
- Randomized trial in patients with TN-IBC

Preclinical study of targeting EGFR in IBC

Enhance the therapeutic efficacy of EGFR-targeted therapy in IBC
Randomized Phase II study of panitumumab and neoadjuvant chemotherapy (PmAb/NAC) in patients with triple negative receptor (TN)-IBC.

COX2/Nodal/CSC, microenvironment changes, chemokine, cytokine N=36, 72 samples

Arginine methylation, N=72, 72 samples

RNA seq Baseline, N=72, Post PmAb N=36, Residual = 60
Acknowledgements

- State of Texas funding for research of rare and aggressive breast cancers
- Susan G. Komen for the Cure
- NIH R01
- BCRF
- Celgene, Amgen
- The wonderful patient advocate community
Acknowledgements

Morgan Welch IBC Program
- Wendy Woodward
- Savitri Krishnamurth
- Vicente Valero
- Bora Lim
- Huming Sun
- Jie Willey
- Angela Marx
- Pam Alizdeh
- Thomas Buchholz
- Chad Barnnett
- Anita Vines
- Naoko Matsuda
- Tamer Fouad
- Fanny Le Du
- Xuemei Xie
- Dongwei Zhang
- Yating Chang
- James Reuben
- Yung Gong
- Anthony Lucci
- Gildy Babiera
- Grace Mathew
- Charla Parker
- Elizabeth A. Mittendorf
- Summer Jackson
- Yun Gong
- Le-Petross Huong
- Summer Jackson
- Sangeetha Reddy
- Chandra Bartholomeusz
- Jason Lee
- Xiaoping Wang
- Tamer Fouad

MD Anderson Cancer Center
- Jennifer Wargo
- Lajos Pusztai
- Takayuki Iwamoto
- Yu Shen
- Diane Liu

International IBC Consortium
- Massimo Cristofanilli
- Stephan Van Laere
- François Bertucci
- Hideko Yamauchi
- Shaheenah Dawood
- Sofia D Merajver
- Patrice Viens
- Peter B Vermeulen
- Sandra M Swain
- Luc Y Dirix
- Paul H Levine
- Melanie Royce

Other Collaborators
- Hideyuki Saya
- Kazuo Shirakawa

and many, many others

Patients with IBC who participated in the Study
Any Questions?

nueno@mdanderson.org

Teamoncology

Naoto Ueno