Generic protocols for secure multi-party computation

Yao’s garbled circuits and the GMW protocol
What is secure multi-party computation (MPC)?
What is MPC?

Setup:

- In "parties" P_1, P_2, \ldots, P_n with inputs x_1, \ldots, x_n

Goal:

- Evaluate a function F on the inputs x_1, \ldots, x_n

Constraint:

- Keep the inputs "private"
- Learn nothing more about the inputs than what can be inferred through $F(x_1, x_2, \ldots, x_n)$.
Ideal world

Trusted third party:

\[y = F(x_1, x_2, \ldots, x_n) \]

N.B.

- Third party only shares back \(y \)
- No guarantee that inputs remain private:
 - \(y, x_1, \ldots, x_n \) can leak into about \(x_n \)

whole other field to address this issue for statistical applications
We want a protocol π to compute $F(x_1, \ldots, x_n)$ without the need for a third party.

- Yao's garbled circuits
- GMW protocol
Primitives
Oblivious transfer

\[\text{Sender } S_l \]
secrets \(s_1, s_2, \ldots, s_k \)

\[\text{Receiver } R \]
chooses \(i \in \{ 1, \ldots, k \} \)

\[\rightarrow s_i \]

\(R \) obtains \(s_i \) without learning about \(s_j, j \neq i \), and without \(S \) learning \(i \).
Oblivious transfer

Example:
You're taking an exam and the professor has hints for the different questions, but:
- they're only willing to give at most one hint to each student
- as a student for fair grading, you don't want them to know which hint (if any) you requested.

\[
\begin{align*}
\text{hint 1} & \quad \text{hint 2} & \quad \text{hint 3} \\
(\text{student choose 1 in secret})
\end{align*}
\]
Secret sharing

- secret s shares s_A s_B

- Individually, s_A and s_B give no information about s

- Together, s_A and s_B can be used to reconstruct s.
Secret sharing

Example:

Sharing a secret bit $s \in \{0,1\}$:

1. Sample $k \in \{0,1\}$

2. Share $s_A = k \oplus s$ and $s_B = k$.

$\Rightarrow s = s_A \oplus s_B$
Secret sharing

\((t, n)\) - sharing:

- Share secret \(s\) in \(n\) parts such that
 - Any \(t\) parts can reconstruct \(s\)
 - No fewer than \(t\) parts give information about \(s\).
Example (s \in \mathbb{F}):

- Pick random \(p \in \mathbb{F}^{t-1} \) such that \(p(0) = s \).
- Consider the shares \(p(i), i = 1, 2, \ldots, n \).

\(\Rightarrow \) A polynomial of degree \(t-1 \) is uniquely defined by its values at \(t \) points.

\(\Rightarrow \) Some thinking is needed to show this is secure.
GMW protocol
2-party computation of logic gate

\[x, y \in \{0, 1\} \]
2-party computation of logic gate

\[x = x_1 \oplus x_2 \]

\[y = y_1 \oplus y_2 \]
2-party computation of XOR

\[
\begin{align*}
x &= x_1 \oplus x_2 \\
y &= y_1 \oplus y_2
\end{align*}
\]
2-party computation of AND

\[x \land y = x_1 \land y_1 \oplus x_2 \land y_2 \]
\[\quad \oplus x_1 \land y_2 \oplus x_2 \land y_1 \]

\[P_1 : \text{Keep } r \oplus x_1 \land y_1 \]
\[P_2 : \text{Keep } f(x_1, y_2) \oplus x_2 \land y_2 \]
\[P_2 : \text{obtain } f(x_1, y_2) \text{ using OT.} \]

secret sharing

\[x = x_1 \oplus x_2 \]
\[y = y_1 \oplus y_2 \]
Generalization to n party

secrets \(x, y \) in shares \(x_1, \ldots, x_n \) and \(y_1, \ldots, y_n \), \(x = \bigoplus_{i=1}^{n} x_i \), \(y = \bigoplus_{i=1}^{n} y_i \).

- \(x_i \oplus y_i \) is a share of \(x \oplus y \)

- \(x \wedge y = \left(\bigoplus_{i=1}^{n} x_i \wedge y_i \right) \oplus \left(\bigoplus_{i \neq j} x_i \wedge x_j \right) \)

Note: this can be shared between pairs of parties.
Yao’s garbled circuits
Yao’s garbled circuits

- Two-party computation $(f(x, y))$
- Compute facts represented as logic circuits.
Yao’s garbled circuits

P_1 generator

P_2 executor

x_1, x_2
Intuition

- Suppose \(x, y \in \{0, 1\} \).

\[P_2 \text{ will:} \]
- compute \(f(x, 0), f(x, 1) \).

\[P_2 \text{ will:} \]
- request \(f(v_x, v_y) \) from \(P_1 \) using OT.
Intuition

For more complex functions, we use composability:

\[h(f(x_1, y_1), g(x_2, y_2)) \]

P (the generator) doesn't know any input to \(h \), so he has to compute all possible values in advance.
More general intuition

2. View $f(x,y)$ as a table

3. Encrypt:

$$e_{x_2}^{x_3} = Enc_{K_2}(e_{x_1}^{x_3})$$

1. Generate keys

k_0, k_1, k_2, k_3

y, x_1, x_2, x_3

Sort \((p_1, p_2, p_3, p_4)\) \(\in \mathbb{B}^4\).

$\text{Permute: } p_0 \in \{0,1\}, p_1 \in \{0,1,2,3\}, p_1 = 1 - p_2 - p_3 - p_4$
More general intuition

What you obtain:

<table>
<thead>
<tr>
<th>v_x</th>
<th>v_y</th>
<th>$f(v_x, v_y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$f(0,0)$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$f(0,1)$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$f(1,0)$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$f(1,1)$</td>
</tr>
</tbody>
</table>

random sorting

key

encryption key

cyphertext

$\begin{array}{c|c|c}
\text{random sorting} & \text{encryption key} & \text{cyphertext} \\
\hline
p_x^o & p_y^o & k_x^o \quad k_y^o \\
p_x^o & p_y^i & k_x^o \quad k_y^i \\
p_x^i & p_y^o & k_x^i \quad k_y^o \\
p_x^i & p_y^i & k_x^i \quad k_y^i \\
\end{array}$

$\begin{array}{c|c|c}
\text{random sorting} & \text{encryption key} & \text{cyphertext} \\
\hline
e_{0,0} & e_{0,0} & e_{0,0} \\
e_{0,1} & e_{0,1} & e_{0,1} \\
e_{1,0} & e_{1,0} & e_{1,1} \\
e_{1,1} & e_{1,1} & e_{1,1} \\
\end{array}$
More general intuition

- P_1 sends the sorted $(p_x, p_y), (e_x, y)$, $x, y \in \sigma(a,b)$ to P_2.
- P_1 can send K_x, p_x corresponding to its input value.
- P_2 can request K_y, p_y using OT.
- P_2 can decrypt: $\text{Dec}_{K_x, K_y}(e_x, y)$.

Visually

\[(\rho_x, K_x)_{x \in \{0, 1\}} \]
\[(\rho_y, K_y)_{y \in \{0, 1\}} \]

\[(e_{u_x, v_y})_{u_x, v_y \in \{0, 1\}} \]

\[\text{garbled table} \]

\[\text{wire labels} \]

\[x \]
\[y \]

\[z \]

\[this \ is \ composable \]
Hide intermediate results
Composability
Security

- P_1 shares the garbled tables and $(p_{x}^{v_x}, k_x^{v_x})$ corresponding to its input v_x
- P_2 obtains $(p_{y}^{v_y}, k_y^{v_y})$ for its input v_y using OT
- P_2 executes the computation
- P_4 can decrypt the result.