
I love listening to classical music and performing with 

others on the piano and cello. I enjoy competing in 

various algorithmic programming competitions.

Class starts after the music

Jacques Offenbach, Giovanni Sollima, Andrea Noferini – 

Duos for 2 Cellos, Op. 54 No.1: III(2023)

requested by Ian Zhang (TA-of-CM6)



Logistic Bulletin Board

• Mid-semester survey due 2/29 midnight
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CS230 Spring 2024
Module 06: Graph Fundamentals

(Induction on) Graphs



Why graphs?

• Models just about 
anything in the world

• Road network: navigation

• Social network: (mis-)information spread

• Electoral districts: redistricting

• Matching workers to jobs

• Here we starts the “fun” part of CS230
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Graphs in CS201/230
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• CS201 focuses on trees/graphs as data structures
• detailed implementations in a Java context

• simple, step-by-step algorithms that operate on the data structures 
(tree traversal, DFS, BFS…)

• CS230 focuses on trees/graphs as abstract ideas
• directed, undirected, self-loops… don’t care about how to implement

• reasoning about properties of trees/graphs



Focus of CM6
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• In CM6, we will devote most 
of our time and energy on:

• Graph/tree properties
(as mathematical facts, 
not as algorithms)

• How to formally reason
about graph/tree properties



Terminology Musing
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Multigraphs

Simple graphs

Trees

Binary Trees

• Think about these terms as sets.

• Graphs with stronger properties are subsets 

of graphs with weaker properties

• Trees are also multigraphs

• Binary Trees are also simple graphs



Undirected vs. directed
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Multigraphs

Simple graphs

Trees

Binary Trees

Undirected

Undirected

Undirected

Undirected

(seldom discussed)

Directed

Directed

Directed

Directed



PI: What kind of graph
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Downward closed graph properties

10

• Many graph properties are “downward closed”:
• Given that graph 𝐺 has a property 𝑋

• Then all subgraphs 𝐺′ ⊆ 𝐺 retain the property 𝑋

• When we write 𝐺′ ⊆ 𝐺 we actually mean 𝐺′ = 𝑉′, 𝐸′ , 𝑉′ ⊆ 𝑉, 𝐸′ ⊆ 𝐸

• Examples of downward closed graph properties:
• Simple, Forest, Planar, Acyclic



Downward closed graph properties

11

• Many graph properties are “downward closed”:
• Given that graph 𝐺 has a property 𝑋

• Then all subgraphs 𝐺′ ⊆ 𝐺 retain the property 𝑋

• When we write 𝐺′ ⊆ 𝐺 we actually mean 𝐺′ = 𝑉′, 𝐸′ , 𝑉′ ⊆ 𝑉, 𝐸′ ⊆ 𝐸

• Bipartiteness is downward closed… until things become weird

• For this reason, we will allow graphs of 0 or 1 vertices to be bipartite 
(although AIDMA doesn’t agree)



“Upward closed” graph properties
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• Some other graph properties are instead “upward closed” 
provided that we only add edges and not vertices:

• Given that graph 𝐺 = (𝑉, 𝐸) has a property 𝑋

• Then all 𝐺′ = (𝑉, 𝐸′) s.t. 𝐸 ⊆ 𝐸′ retain the property 𝑋

• Examples of upward closed graph properties:
• Connected, Hamiltonian, Cyclic



Usefulness of closed graph properties
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• Knowing certain graph properties are closed is useful for proving theorems 
for the whole family of graphs

• Theorem. Any graph with property 𝑋 satisfies statement 𝑌.

• Proof sketch: 

• Base Case(s). The “smallest” graphs with property 𝑋 satisfies statement 𝑌.

• Induction Step. Consider now an arbitrary graph 𝐺 with property 𝑋. 
• Remove one vertex (or one edge) from 𝐺. 

• The resulting graph is a “smaller” graph 𝐺′ that satisfies statement 𝑋.

• We assume (implicit hypothesis) that 𝐺′ satisfies statement 𝑌.

• We then prove that adding such vertex/edge back retains statement 𝑌.



Wait, we can do that?
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• The “proof sketch” in the previous slide is a template of
structural induction (in the context of graphs).

• If weak/strong inductions are driven by the set of natural numbers,
structural inductions are driven by recursively defined structures.



Recursively defined structures
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• Same idea, but the set now contains objects, not just numbers

• Example 3. The set of binary trees, 𝒯, can be defined as:

• Base Case: 𝑇 = (∅, ∅) ∈ 𝒯 (the “empty tree”)

• Constructor Case: If 𝑇1, 𝑇2 ∈ 𝒯, then                   ∈ 𝒯

𝑇1 𝑇2



Inducting on recursively defined structures
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• (Structural induction template) Given a recursively defined set 𝑆

• Goal. We want to show ∀ 𝑠 ∈ 𝑆 [𝑃 𝑠 ] for a predicate 𝑃

• Proof: 
• Base Case(s). Prove 𝑃 𝑠 for all base cases in the definition of 𝑆.

• Inductive Hypothesis (USUALLY IMPLICIT). 
Assume 𝑃 𝑠 for all elements of 𝑆 in the constructor case. 

• Induction Step. Prove 𝑃 𝑠 for each of subcases of the constructor case.

• Sometimes called Basis Step and Recursive Step



Inducting on recursively defined structures
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• Consider again the set of binary trees, 𝒯

• Theorem. ∀𝑇 ∈ 𝒯 [𝑛(𝑇) ≤ 2ℎ 𝑇 +1 − 1] 𝑛(𝑇)= # of vertices in 𝑇 ℎ 𝑇 =height of 𝑇

• Proof (contains informal language):
• Base Case(s). For 𝑇 = ∅, ∅ LHS = 0  RHS = 1

• Induction Step. Consider two binary trees 𝑇1 and 𝑇2
such that 𝑛(𝑇1) ≤ 2ℎ 𝑇1 +1 − 1 and 𝑛(𝑇2) ≤ 2ℎ 𝑇2 +1 − 1. Then for the new tree 𝑇′:

LHS = 𝑛 𝑇1 + 𝑛 𝑇2 + 1 ≤ (2ℎ 𝑇1 +1−1) + (2ℎ 𝑇2 +1−1) + 1
≤ 2max ℎ 𝑇1 +1,ℎ 𝑇2 +1 + 2max ℎ 𝑇1 +1,ℎ 𝑇2 +1 − 1

= 2max ℎ 𝑇1 +1,ℎ 𝑇2 +1 +1 − 1
≤ 2ℎ 𝑇′ +1 − 1 = RHS

𝑇1 𝑇2

𝑇′

This inequality holds as long as the two subtrees T_1 and T_2

are not both empty. But if the two subtrees are both empty,

then the entire tree is just one vertex - we can manually

verify that LHS=RHS=1 for that case.



Inducting on recursively defined structures
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• The same proof can instead “induct on ℎ 𝑇 ”

• Theorem.∀𝑇 ∈ 𝒯 [𝑛(𝑇) ≤ 2ℎ 𝑇 +1 − 1] 𝑛(𝑇)= # of vertices in 𝑇 ℎ 𝑇 =height of 𝑇

• Proof (contains informal language):
• Base Case(s). For all trees 𝑻 with 𝒉 𝑻 = 𝟎 we have LHS ≤ 1, RHS = 1
• (Strong) Inductive Hypothesis. Assume the result holds for 

all trees 𝑻 with 𝒉 𝑻 ≤ 𝒌. 
• Induction Step. Consider an arbitrary tree 𝑇′ with height 𝒌 + 𝟏. 

It can be written as the root plus two binary subtrees 𝑇1 and 𝑇2. 

• Then for the new tree 𝑇′:

LHS = 𝑛 𝑇1 + 𝑛 𝑇2 + 1 ≤ (2𝑘+1−1) + (2𝑘+1−1) + 1
= 2𝑘+2 − 1 ≤ 2ℎ 𝑇′ +1 − 1 = RHS

𝑇1 𝑇2

𝑇′



Inducting on recursively defined structures
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• The proof on the previous slide was just a “regular strong induction”:

• Theorem. ∀𝒏 ∈ ℕ [𝑷 𝒏 ]
where 𝑷 𝒏 ≔ ∀𝑇 ∈ 𝒯 [ℎ 𝑇 ≤ 𝑛 → 𝑛(𝑇) ≤ 2ℎ 𝑇 +1 − 1]

• Neither approach is “strictly better” than the other

• The takeaway here is that we can directly induct on the structure (like in the first proof)
and not rely on any variable (like in the second proof)



weak induction is structural induction

20

• Example 6. The set of nonnegative integers, ℕ, can be “defined” as:

• Base Case: 0 ∈ ℕ

• Constructor Case: If 𝑥 ∈ ℕ, then 𝑥 + 1 ∈ ℕ.
• This is somewhat like circular reasoning: addition does not really have a meaning without defining ℕ first

• But this shows weak induction is a special case of structural induction
on the recursively defined set ℕ.

• So anything achievable by weak induction is also achievable by structural induction

• Is the opposite true? We will revisit this next week



I am a Computer Science and Biology double major 

with a minor in Asian an Middle Eastern Studies. 

Outside of coursework, I am currently a student 

consultant at a startup by Duke alum and am involved 

in Lambda Phi Epsilon. Feel free to reach out to me 

about poker and/or anime!

Class starts after this song

Song Dongye – Anhe Bridge (2013)

requested by Shawn Ma (TA-of-CM6)



Logistic Bulletin Board
• Mid-semester survey:

• Some started but “did not finish” according to Qualtrics+Violet
• Please complete it by end of Sunday if that’s the case

• Elective modules:
• Completely async EMs (E and F) released in Canvas
• So you have 2 full months to play with them
• Hybrid ones (A and D) next Friday and then in Canvas
• Sync ones (B and C) in April
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No recitations

Recitations are converted into consulting hours

Some will be online

Graders start grading CM6 on 3/18 evening



CS230 Spring 2024
Module 06: Graph Fundamentals

Graph Topics
(connectivity, colorability, matching)



Connectivity
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• “Graph of Duke bus network” 
during non-peak time of a 
regular weekday

• one vertex for each bus stop

• (undirected) edges between two 
consecutive stops on a route



Modeling the world
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• What does the graph and its connectivity 
really capture?

• Should we model the graph differently?
• Depend on what we care about



𝑘 −connectivity
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• A graph 𝐺 is said to be 𝑘 −edge connected if 𝐺 remains 
connected after the removal of (any) 𝑘 − 1 edges.

• It takes at least 𝑘 removals to disconnect the graph

• A graph 𝐺 is said to be 𝑘 −vertex connected if 𝐺 remains 
connected after the removal of (any) 𝑘 − 1 vertices.

• Remember edges can only exist between pairs of vertices, 
so removing a vertex also removes all edges incident to the vertex.

The complete graph 𝐾𝑛 

with 𝑛 vertices is 

(𝑛 − 1) −edge connected 

and also

(𝑛 − 1) −vertex connected 



PI: 𝑘-connectivity
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The butterfly graph
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• 2 −edge connected

• 1 −vertex connected

• Not 2 −vertex connected

• Continued in recitation



Edge cut and vertex cut
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• In a graph 𝐺 = (𝑉, 𝐸),
a subset of edges 𝐸′ ⊆ 𝐸 
is an edge cut 
if 𝐺′ = (𝑉, 𝐸\𝐸′) is disconnected.

• Can define vertex cuts similarly



Edge cut and vertex cut
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• In a graph 𝐺 = (𝑉, 𝐸),
a subset of edges 𝐸′ ⊆ 𝐸 
is an edge cut 
if 𝐺′ = (𝑉, 𝐸\𝐸′) is disconnected.

• There are multiple minimum 
edge cuts (in terms of |𝐸′|)



Edge cut and vertex cut
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• In a graph 𝐺 = (𝑉, 𝐸),
a subset of edges 𝐸′ ⊆ 𝐸 
is an edge cut 
if 𝐺′ = (𝑉, 𝐸\𝐸′) is disconnected.

• Non-minimum edge cut



Coloring

33

• “Final exam scheduling problem”

• one vertex for each class

• an edge between two vertices if there 
are students taking both classes 

• each “color” is a final exam slot

201 230

330210

250201 230

330210

250

201 230

330210

250



𝑘 −colorability
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• A graph 𝐺 = (𝑉, 𝐸) is said to be 𝑘 −(vertex) colorable if there is 
a function 𝑓: 𝑉 → {1,2, … , 𝑘} such that for every edge (𝑢, 𝑣) ∈ 𝐸
we have 𝑓 𝑢 ≠ 𝑓 𝑣 .

• In words: we can color the vertices using 𝑘 colors, such that the 
two endpoints of each edge have different colors.

• The minimum such 𝑘 is called the chromatic number χ(𝐺)
• Can define 𝑘 −edge colorable similarly (swap vertices and edges)

The complete graph 𝐾𝑛 

with 𝑛 vertices is 

𝑛 −colorable but not

(𝑛 − 1) −colorable,

so χ 𝐾𝑛 = 𝑛



PI: 𝑘-colorability
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The complete graph 𝐾𝑛 

with 𝑛 > 2 vertices is 

2 −vertex connected

but not

2 −colorable

 



Inducting on graphs

36

• Consider again the set of undirected (simple) graphs, 𝒢

• Theorem. Define the maximum degree of a graph 𝐺 ∈ 𝒢 as
∆ 𝐺 ≔ max

𝑣∈𝑉
deg(𝑣). Then every 𝐺 is (∆ 𝐺 + 1)-colorable.

• Proof:
• Base Case(s). For 𝐺 = ∅, ∅ , ∆ 𝐺 = 0 and 𝐺 is indeed 1-colorable

• Induction Step. What should we do here?

Never attempt a structural induction without thinking about the recursive definition first



Recursively defined structures
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• Example 4. The set of (undirected) graphs, 𝒢, can be defined as:

• Base Case: 𝐺 = (∅, ∅) ∈ 𝒢 (the “empty graph”)

• Constructor Case: If 𝐺 = (𝑉, 𝐸) ∈ 𝒢, then:
• 𝐺′ = (𝑉 ∪ 𝑣 , 𝐸) ∈ 𝒢 (“add a vertex”)

• 𝐺′ = (𝑉, 𝐸 ∪ 𝑒 ) ∈ 𝒢 where 𝑒 = 𝑢, 𝑣 , 𝑢, 𝑣 ∈ 𝑉 (“add an edge”)



An alternative recursive definition

38

• The set of (undirected) simple graphs, 𝒢, can be alternatively defined as:

• Base Case: 𝐺 = (∅, ∅) ∈ 𝒢 (the “empty graph”)

• Constructor Case: If 𝐺 = (𝑉, 𝐸) ∈ 𝒢, then:
• 𝐺′ = (𝑉 ∪ 𝑣 , 𝐸 ∪ 𝐸𝑣) ∈ 𝒢 (“add a vertex and all its incident edges”)

• Every edge in 𝐸𝑣 must be between 𝑣 and some existing vertex



Inducting on graphs

39

• Theorem. Define the maximum degree of a graph 𝐺 ∈ 𝒢 as
∆ 𝐺 ≔ max

𝑣∈𝑉
deg(𝑣). Then every 𝐺 is (∆ 𝐺 + 1)-colorable.

• Induction Step. (contains informal language):

• Assume 𝐺 is (∆ 𝐺 + 1)-colorable. Consider 𝐺′ = (𝑉 ∪ 𝑣 , 𝐸 ∪ 𝐸𝑣) where |𝐸𝑣| ≤ ∆ 𝐺′ .

• Consider any proper (∆ 𝐺 + 1)-coloring of 𝐺 (let’s call it 𝒞(𝐺)). By definition we have 
∆ 𝐺 ≤ ∆ 𝐺′ , which means 𝒞(𝐺) uses at most ∆ 𝐺′ + 1 colors.

• Every neighbor of 𝑣 has a color in 𝒞(𝐺). Since there are |𝐸𝑣| ≤ ∆ 𝐺′ neighbors of 𝑣, 
they use up at most |𝐸𝑣| ≤ ∆ 𝐺′ colors. Since we have ∆ 𝐺′ + 1 colors, there is at 
least one spare color for 𝑣. 

• This in combination with 𝒞(𝐺) gives a proper (∆ 𝐺′ + 1)-coloring of 𝐺′. 



Matching

40

• A matching of a graph 𝐺 = (𝑉, 𝐸) is an 
edge subset 𝑀 ⊆ 𝐸 such that in the 
subgraph 𝐺′ = (𝑉,𝑀) we have
deg(𝑣) ≤ 1 for all 𝑣 ∈ 𝑉.

• In words, each vertex is either matched to 
another vertex or unmatched.

• Perfect matching if deg 𝑣 = 1 ∀𝑣 ∈ 𝑉



Matching

41

• {Red edges} is a perfect matching



Matching

42

• {Red edges} is a perfect matching

• {Gold edges} is a matching but not perfect

• {Purple edges} is a matching as well
• what, not seeing the edges? There’s no edge in 

this matching at all



Matching

43

• Perfect matching

• Yet another perfect matching that is 
disjoint with the orange one

• The uncolored edges form a third disjoint 
perfect matching



Bipartite Matching

47

• Matching, but with the underlying graph already bipartite:
𝐺 = (𝐿 ∪ 𝑅, 𝐸)

• Matching TAs/residents/interns with positions

• Matching jobs with machine cycles/slots

• … but NOT: matching men with women

• These applications often involves preferences and some additional ideas of 
what an optimal matching looks like (stable, fair, …)

• We will just discuss whether a perfect matching exists



Hall’s theorem (for the special case 𝐿 = |𝑅|)

48

• Theorem. 
A bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) has a perfect matching
if and only if 
for any subset 𝑆 ⊆ 𝐿, the size of the image of 𝑆 w.r.t. 𝐸, 𝑁(𝑆), 
is at least as large as |𝑆|.

• 𝑁(𝑆) is just the set of all vertices in 𝑅 that are connected to some 
vertices in 𝐿 by edges in 𝐸

Hall’s condition



Terminology Practice

49

𝑺 |𝑺| 𝑵(𝑺) |𝑵 𝑺 | Hall’s condition 

satisfied?

{𝑎} 1 {𝑥, 𝑦} 2 Yes

{𝑏} 1 {𝑥, 𝑦, 𝑧} 3 Yes

{𝑐} 1 {𝑦} 1 Yes

{𝑎, 𝑏} 2 {𝑥, 𝑦, 𝑧} 3 Yes

{𝑎, 𝑐} 2 {𝑥, 𝑦} 2 Yes

{𝑏, 𝑐} 2 {𝑥, 𝑦, 𝑧} 3 Yes

{𝑎, 𝑏, 𝑐} 3 {𝑥, 𝑦, 𝑧} 3 Yes

𝑎

𝑏

𝑥

𝑦

𝑧

𝑐



Proof of Hall’s theorem (1)
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• Part 1. perfect matching exists ⇒ Hall’s condition
• Simple prove by contradiction: assume Hall’s condition doesn’t hold

• Then there exists a subset 𝑆 ⊆ 𝐿 such that |𝑁 𝑆 | < |𝑆|

• But if a perfect matching exists, every vertex in 𝑆 needs to match with 
a distinct vertex in 𝑁 𝑆 , which means |𝑁 𝑆 | ≥ |𝑆|, a contradiction 



Proof of Hall’s theorem (2)
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• Part 2. Hall’s condition ⇒ perfect matching exists 

• The set of balanced bipartite graphs, ℬ, can be alternatively defined as:

• Base Case: 𝐺 = (∅ ∪ ∅, ∅) ∈ ℬ (the “empty graph”)

• Constructor Case: If 𝐺 = (𝐿 ∪ 𝑅, 𝐸) ∈ ℬ, then:
• 𝐺 = ((𝐿 ∪ 𝑙 ) ∪ (𝑅 ∪ 𝑟 ), 𝐸 ∪ 𝐸′) ∈ ℬ

(“adding one vertex to each side, then add some edges”)

• … this is hard to work with! We will instead resort to a (weak) induction



Proof of Hall’s theorem (2)
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• Part 2. Hall’s condition ⇒ perfect matching exists for all 𝐿 = 𝑅 = 𝑛

• Proof:
• Base Case. 𝑛 = 0. For 𝐺 = (∅ ∪ ∅, ∅), ∅ is a perfect matching (yes it is)

• Inductive Hypothesis. Assume the theorem holds for 𝑛 = 𝑘 for 𝑘 ≥ 0.

• Induction Step. Consider a graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) with 𝐿 = 𝑅 = 𝑘 + 1.
• Case 1. Hall’s condition is loosely satisfied (equation never holds).

• Case 2. Hall’s condition is tightly satisfied (equation holds for some 𝑆).



Proof of Hall’s theorem (2-1)

53

• Part 2-1. Hall’s condition loosely satisfied ⇒ perfect matching exists 

• Induction Step. Consider a graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) with 𝐿 = 𝑅 = 𝑘 + 1
such that for all 𝑆 ⊆ 𝐿 we have |𝑁 𝑆 | > |𝑆|.

• Pick an arbitrary left vertex 𝑙 ∈ 𝐿 and match 𝑙 with an arbitrary right vertex 𝑟 ∈ 𝑁( 𝑙 )

• Consider the remainder graph 𝐺′ = (𝐿 − {𝑙} ∪ 𝑅 − {𝑟}, 𝐸′) with 𝑘 vertices each side.

• Now for all 𝑆′ ⊆ 𝐿 − {𝑙}, we have 𝑁′(𝑆′) ≥ 𝑁 𝑆′ − 1 ≥ |𝑆′|. 

• In other words, Hall’s condition is still satisfied (not necessarily loosely) for 𝐺′.

• Any perfect matching of 𝐺′ plus (𝑙, 𝑟) is a perfect matching for 𝐺!



Proof of Hall’s theorem (2-2 - skeleton)
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• Part 2-2. Hall’s condition strictly satisfied ⇒ perfect matching exists 

• Induction Step. Consider a graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) with 𝐿 = 𝑅 = 𝑘 + 1
such that for all 𝑆 ⊆ 𝐿 we have |𝑁 𝑆 | ≥ |𝑆| and the equality holds for at 
least one 𝑆.

• Find a perfect matching between |𝑆| and |𝑁 𝑆 |

• Consider the rest of the graph without |𝑆| and |𝑁 𝑆 |
• We can show Hall’s condition still holds for this remainder graph

• Therefore there is a perfect matching for this remainder graph; combine the two parts gives a 
perfect matching for the entire graph
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