
I love listening to classical music and performing with

others on the piano and cello. I enjoy competing in

various algorithmic programming competitions.

Class starts after the music

Jacques Offenbach, Giovanni Sollima, Andrea Noferini –

Duos for 2 Cellos, Op. 54 No.1: III(2023)

requested by Ian Zhang (TA-of-CM6)

Logistic Bulletin Board

• Mid-semester survey due 2/29 midnight

2

CS230 Spring 2024
Module 06: Graph Fundamentals

(Induction on) Graphs

Why graphs?

• Models just about
anything in the world

• Road network: navigation

• Social network: (mis-)information spread

• Electoral districts: redistricting

• Matching workers to jobs

• Here we starts the “fun” part of CS230

4

Graphs in CS201/230

5

• CS201 focuses on trees/graphs as data structures
• detailed implementations in a Java context

• simple, step-by-step algorithms that operate on the data structures
(tree traversal, DFS, BFS…)

• CS230 focuses on trees/graphs as abstract ideas
• directed, undirected, self-loops… don’t care about how to implement

• reasoning about properties of trees/graphs

Focus of CM6

6

• In CM6, we will devote most
of our time and energy on:

• Graph/tree properties
(as mathematical facts,
not as algorithms)

• How to formally reason
about graph/tree properties

Terminology Musing

7

Multigraphs

Simple graphs

Trees

Binary Trees

• Think about these terms as sets.

• Graphs with stronger properties are subsets

of graphs with weaker properties

• Trees are also multigraphs

• Binary Trees are also simple graphs

Undirected vs. directed

8

Multigraphs

Simple graphs

Trees

Binary Trees

Undirected

Undirected

Undirected

Undirected

(seldom discussed)

Directed

Directed

Directed

Directed

PI: What kind of graph

9

Downward closed graph properties

10

• Many graph properties are “downward closed”:
• Given that graph 𝐺 has a property 𝑋

• Then all subgraphs 𝐺′ ⊆ 𝐺 retain the property 𝑋

• When we write 𝐺′ ⊆ 𝐺 we actually mean 𝐺′ = 𝑉′, 𝐸′ , 𝑉′ ⊆ 𝑉, 𝐸′ ⊆ 𝐸

• Examples of downward closed graph properties:
• Simple, Forest, Planar, Acyclic

Downward closed graph properties

11

• Many graph properties are “downward closed”:
• Given that graph 𝐺 has a property 𝑋

• Then all subgraphs 𝐺′ ⊆ 𝐺 retain the property 𝑋

• When we write 𝐺′ ⊆ 𝐺 we actually mean 𝐺′ = 𝑉′, 𝐸′ , 𝑉′ ⊆ 𝑉, 𝐸′ ⊆ 𝐸

• Bipartiteness is downward closed… until things become weird

• For this reason, we will allow graphs of 0 or 1 vertices to be bipartite
(although AIDMA doesn’t agree)

“Upward closed” graph properties

12

• Some other graph properties are instead “upward closed”
provided that we only add edges and not vertices:

• Given that graph 𝐺 = (𝑉, 𝐸) has a property 𝑋

• Then all 𝐺′ = (𝑉, 𝐸′) s.t. 𝐸 ⊆ 𝐸′ retain the property 𝑋

• Examples of upward closed graph properties:
• Connected, Hamiltonian, Cyclic

Usefulness of closed graph properties

13

• Knowing certain graph properties are closed is useful for proving theorems
for the whole family of graphs

• Theorem. Any graph with property 𝑋 satisfies statement 𝑌.

• Proof sketch:

• Base Case(s). The “smallest” graphs with property 𝑋 satisfies statement 𝑌.

• Induction Step. Consider now an arbitrary graph 𝐺 with property 𝑋.
• Remove one vertex (or one edge) from 𝐺.

• The resulting graph is a “smaller” graph 𝐺′ that satisfies statement 𝑋.

• We assume (implicit hypothesis) that 𝐺′ satisfies statement 𝑌.

• We then prove that adding such vertex/edge back retains statement 𝑌.

Wait, we can do that?

14

• The “proof sketch” in the previous slide is a template of
structural induction (in the context of graphs).

• If weak/strong inductions are driven by the set of natural numbers,
structural inductions are driven by recursively defined structures.

Recursively defined structures

15

• Same idea, but the set now contains objects, not just numbers

• Example 3. The set of binary trees, 𝒯, can be defined as:

• Base Case: 𝑇 = (∅, ∅) ∈ 𝒯 (the “empty tree”)

• Constructor Case: If 𝑇1, 𝑇2 ∈ 𝒯, then ∈ 𝒯

𝑇1 𝑇2

Inducting on recursively defined structures

16

• (Structural induction template) Given a recursively defined set 𝑆

• Goal. We want to show ∀ 𝑠 ∈ 𝑆 [𝑃 𝑠] for a predicate 𝑃

• Proof:
• Base Case(s). Prove 𝑃 𝑠 for all base cases in the definition of 𝑆.

• Inductive Hypothesis (USUALLY IMPLICIT).
Assume 𝑃 𝑠 for all elements of 𝑆 in the constructor case.

• Induction Step. Prove 𝑃 𝑠 for each of subcases of the constructor case.

• Sometimes called Basis Step and Recursive Step

Inducting on recursively defined structures

17

• Consider again the set of binary trees, 𝒯

• Theorem. ∀𝑇 ∈ 𝒯 [𝑛(𝑇) ≤ 2ℎ 𝑇 +1 − 1] 𝑛(𝑇)= # of vertices in 𝑇 ℎ 𝑇 =height of 𝑇

• Proof (contains informal language):
• Base Case(s). For 𝑇 = ∅, ∅ LHS = 0 RHS = 1

• Induction Step. Consider two binary trees 𝑇1 and 𝑇2
such that 𝑛(𝑇1) ≤ 2ℎ 𝑇1 +1 − 1 and 𝑛(𝑇2) ≤ 2ℎ 𝑇2 +1 − 1. Then for the new tree 𝑇′:

LHS = 𝑛 𝑇1 + 𝑛 𝑇2 + 1 ≤ (2ℎ 𝑇1 +1−1) + (2ℎ 𝑇2 +1−1) + 1
≤ 2max ℎ 𝑇1 +1,ℎ 𝑇2 +1 + 2max ℎ 𝑇1 +1,ℎ 𝑇2 +1 − 1

= 2max ℎ 𝑇1 +1,ℎ 𝑇2 +1 +1 − 1
≤ 2ℎ 𝑇′ +1 − 1 = RHS

𝑇1 𝑇2

𝑇′

This inequality holds as long as the two subtrees T_1 and T_2

are not both empty. But if the two subtrees are both empty,

then the entire tree is just one vertex - we can manually

verify that LHS=RHS=1 for that case.

Inducting on recursively defined structures

18

• The same proof can instead “induct on ℎ 𝑇 ”

• Theorem.∀𝑇 ∈ 𝒯 [𝑛(𝑇) ≤ 2ℎ 𝑇 +1 − 1] 𝑛(𝑇)= # of vertices in 𝑇 ℎ 𝑇 =height of 𝑇

• Proof (contains informal language):
• Base Case(s). For all trees 𝑻 with 𝒉 𝑻 = 𝟎 we have LHS ≤ 1, RHS = 1
• (Strong) Inductive Hypothesis. Assume the result holds for

all trees 𝑻 with 𝒉 𝑻 ≤ 𝒌.
• Induction Step. Consider an arbitrary tree 𝑇′ with height 𝒌 + 𝟏.

It can be written as the root plus two binary subtrees 𝑇1 and 𝑇2.

• Then for the new tree 𝑇′:

LHS = 𝑛 𝑇1 + 𝑛 𝑇2 + 1 ≤ (2𝑘+1−1) + (2𝑘+1−1) + 1
= 2𝑘+2 − 1 ≤ 2ℎ 𝑇′ +1 − 1 = RHS

𝑇1 𝑇2

𝑇′

Inducting on recursively defined structures

19

• The proof on the previous slide was just a “regular strong induction”:

• Theorem. ∀𝒏 ∈ ℕ [𝑷 𝒏]
where 𝑷 𝒏 ≔ ∀𝑇 ∈ 𝒯 [ℎ 𝑇 ≤ 𝑛 → 𝑛(𝑇) ≤ 2ℎ 𝑇 +1 − 1]

• Neither approach is “strictly better” than the other

• The takeaway here is that we can directly induct on the structure (like in the first proof)
and not rely on any variable (like in the second proof)

weak induction is structural induction

20

• Example 6. The set of nonnegative integers, ℕ, can be “defined” as:

• Base Case: 0 ∈ ℕ

• Constructor Case: If 𝑥 ∈ ℕ, then 𝑥 + 1 ∈ ℕ.
• This is somewhat like circular reasoning: addition does not really have a meaning without defining ℕ first

• But this shows weak induction is a special case of structural induction
on the recursively defined set ℕ.

• So anything achievable by weak induction is also achievable by structural induction

• Is the opposite true? We will revisit this next week

I am a Computer Science and Biology double major

with a minor in Asian an Middle Eastern Studies.

Outside of coursework, I am currently a student

consultant at a startup by Duke alum and am involved

in Lambda Phi Epsilon. Feel free to reach out to me

about poker and/or anime!

Class starts after this song

Song Dongye – Anhe Bridge (2013)

requested by Shawn Ma (TA-of-CM6)

Logistic Bulletin Board
• Mid-semester survey:

• Some started but “did not finish” according to Qualtrics+Violet
• Please complete it by end of Sunday if that’s the case

• Elective modules:
• Completely async EMs (E and F) released in Canvas
• So you have 2 full months to play with them
• Hybrid ones (A and D) next Friday and then in Canvas
• Sync ones (B and C) in April

22

23

No recitations

Recitations are converted into consulting hours

Some will be online

Graders start grading CM6 on 3/18 evening

CS230 Spring 2024
Module 06: Graph Fundamentals

Graph Topics
(connectivity, colorability, matching)

Connectivity

25

• “Graph of Duke bus network”
during non-peak time of a
regular weekday

• one vertex for each bus stop

• (undirected) edges between two
consecutive stops on a route

Modeling the world

26

• What does the graph and its connectivity
really capture?

• Should we model the graph differently?
• Depend on what we care about

𝑘 −connectivity

27

• A graph 𝐺 is said to be 𝑘 −edge connected if 𝐺 remains
connected after the removal of (any) 𝑘 − 1 edges.

• It takes at least 𝑘 removals to disconnect the graph

• A graph 𝐺 is said to be 𝑘 −vertex connected if 𝐺 remains
connected after the removal of (any) 𝑘 − 1 vertices.

• Remember edges can only exist between pairs of vertices,
so removing a vertex also removes all edges incident to the vertex.

The complete graph 𝐾𝑛

with 𝑛 vertices is

(𝑛 − 1) −edge connected

and also

(𝑛 − 1) −vertex connected

PI: 𝑘-connectivity

28

The butterfly graph

29

• 2 −edge connected

• 1 −vertex connected

• Not 2 −vertex connected

• Continued in recitation

Edge cut and vertex cut

30

• In a graph 𝐺 = (𝑉, 𝐸),
a subset of edges 𝐸′ ⊆ 𝐸
is an edge cut
if 𝐺′ = (𝑉, 𝐸\𝐸′) is disconnected.

• Can define vertex cuts similarly

Edge cut and vertex cut

31

• In a graph 𝐺 = (𝑉, 𝐸),
a subset of edges 𝐸′ ⊆ 𝐸
is an edge cut
if 𝐺′ = (𝑉, 𝐸\𝐸′) is disconnected.

• There are multiple minimum
edge cuts (in terms of |𝐸′|)

Edge cut and vertex cut

32

• In a graph 𝐺 = (𝑉, 𝐸),
a subset of edges 𝐸′ ⊆ 𝐸
is an edge cut
if 𝐺′ = (𝑉, 𝐸\𝐸′) is disconnected.

• Non-minimum edge cut

Coloring

33

• “Final exam scheduling problem”

• one vertex for each class

• an edge between two vertices if there
are students taking both classes

• each “color” is a final exam slot

201 230

330210

250201 230

330210

250

201 230

330210

250

𝑘 −colorability

34

• A graph 𝐺 = (𝑉, 𝐸) is said to be 𝑘 −(vertex) colorable if there is
a function 𝑓: 𝑉 → {1,2, … , 𝑘} such that for every edge (𝑢, 𝑣) ∈ 𝐸
we have 𝑓 𝑢 ≠ 𝑓 𝑣 .

• In words: we can color the vertices using 𝑘 colors, such that the
two endpoints of each edge have different colors.

• The minimum such 𝑘 is called the chromatic number χ(𝐺)
• Can define 𝑘 −edge colorable similarly (swap vertices and edges)

The complete graph 𝐾𝑛

with 𝑛 vertices is

𝑛 −colorable but not

(𝑛 − 1) −colorable,

so χ 𝐾𝑛 = 𝑛

PI: 𝑘-colorability

35

The complete graph 𝐾𝑛

with 𝑛 > 2 vertices is

2 −vertex connected

but not

2 −colorable

Inducting on graphs

36

• Consider again the set of undirected (simple) graphs, 𝒢

• Theorem. Define the maximum degree of a graph 𝐺 ∈ 𝒢 as
∆ 𝐺 ≔ max

𝑣∈𝑉
deg(𝑣). Then every 𝐺 is (∆ 𝐺 + 1)-colorable.

• Proof:
• Base Case(s). For 𝐺 = ∅, ∅ , ∆ 𝐺 = 0 and 𝐺 is indeed 1-colorable

• Induction Step. What should we do here?

Never attempt a structural induction without thinking about the recursive definition first

Recursively defined structures

37

• Example 4. The set of (undirected) graphs, 𝒢, can be defined as:

• Base Case: 𝐺 = (∅, ∅) ∈ 𝒢 (the “empty graph”)

• Constructor Case: If 𝐺 = (𝑉, 𝐸) ∈ 𝒢, then:
• 𝐺′ = (𝑉 ∪ 𝑣 , 𝐸) ∈ 𝒢 (“add a vertex”)

• 𝐺′ = (𝑉, 𝐸 ∪ 𝑒) ∈ 𝒢 where 𝑒 = 𝑢, 𝑣 , 𝑢, 𝑣 ∈ 𝑉 (“add an edge”)

An alternative recursive definition

38

• The set of (undirected) simple graphs, 𝒢, can be alternatively defined as:

• Base Case: 𝐺 = (∅, ∅) ∈ 𝒢 (the “empty graph”)

• Constructor Case: If 𝐺 = (𝑉, 𝐸) ∈ 𝒢, then:
• 𝐺′ = (𝑉 ∪ 𝑣 , 𝐸 ∪ 𝐸𝑣) ∈ 𝒢 (“add a vertex and all its incident edges”)

• Every edge in 𝐸𝑣 must be between 𝑣 and some existing vertex

Inducting on graphs

39

• Theorem. Define the maximum degree of a graph 𝐺 ∈ 𝒢 as
∆ 𝐺 ≔ max

𝑣∈𝑉
deg(𝑣). Then every 𝐺 is (∆ 𝐺 + 1)-colorable.

• Induction Step. (contains informal language):

• Assume 𝐺 is (∆ 𝐺 + 1)-colorable. Consider 𝐺′ = (𝑉 ∪ 𝑣 , 𝐸 ∪ 𝐸𝑣) where |𝐸𝑣| ≤ ∆ 𝐺′ .

• Consider any proper (∆ 𝐺 + 1)-coloring of 𝐺 (let’s call it 𝒞(𝐺)). By definition we have
∆ 𝐺 ≤ ∆ 𝐺′ , which means 𝒞(𝐺) uses at most ∆ 𝐺′ + 1 colors.

• Every neighbor of 𝑣 has a color in 𝒞(𝐺). Since there are |𝐸𝑣| ≤ ∆ 𝐺′ neighbors of 𝑣,
they use up at most |𝐸𝑣| ≤ ∆ 𝐺′ colors. Since we have ∆ 𝐺′ + 1 colors, there is at
least one spare color for 𝑣.

• This in combination with 𝒞(𝐺) gives a proper (∆ 𝐺′ + 1)-coloring of 𝐺′.

Matching

40

• A matching of a graph 𝐺 = (𝑉, 𝐸) is an
edge subset 𝑀 ⊆ 𝐸 such that in the
subgraph 𝐺′ = (𝑉,𝑀) we have
deg(𝑣) ≤ 1 for all 𝑣 ∈ 𝑉.

• In words, each vertex is either matched to
another vertex or unmatched.

• Perfect matching if deg 𝑣 = 1 ∀𝑣 ∈ 𝑉

Matching

41

• {Red edges} is a perfect matching

Matching

42

• {Red edges} is a perfect matching

• {Gold edges} is a matching but not perfect

• {Purple edges} is a matching as well
• what, not seeing the edges? There’s no edge in

this matching at all

Matching

43

• Perfect matching

• Yet another perfect matching that is
disjoint with the orange one

• The uncolored edges form a third disjoint
perfect matching

Bipartite Matching

47

• Matching, but with the underlying graph already bipartite:
𝐺 = (𝐿 ∪ 𝑅, 𝐸)

• Matching TAs/residents/interns with positions

• Matching jobs with machine cycles/slots

• … but NOT: matching men with women

• These applications often involves preferences and some additional ideas of
what an optimal matching looks like (stable, fair, …)

• We will just discuss whether a perfect matching exists

Hall’s theorem (for the special case 𝐿 = |𝑅|)

48

• Theorem.
A bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) has a perfect matching
if and only if
for any subset 𝑆 ⊆ 𝐿, the size of the image of 𝑆 w.r.t. 𝐸, 𝑁(𝑆),
is at least as large as |𝑆|.

• 𝑁(𝑆) is just the set of all vertices in 𝑅 that are connected to some
vertices in 𝐿 by edges in 𝐸

Hall’s condition

Terminology Practice

49

𝑺 |𝑺| 𝑵(𝑺) |𝑵 𝑺 | Hall’s condition

satisfied?

{𝑎} 1 {𝑥, 𝑦} 2 Yes

{𝑏} 1 {𝑥, 𝑦, 𝑧} 3 Yes

{𝑐} 1 {𝑦} 1 Yes

{𝑎, 𝑏} 2 {𝑥, 𝑦, 𝑧} 3 Yes

{𝑎, 𝑐} 2 {𝑥, 𝑦} 2 Yes

{𝑏, 𝑐} 2 {𝑥, 𝑦, 𝑧} 3 Yes

{𝑎, 𝑏, 𝑐} 3 {𝑥, 𝑦, 𝑧} 3 Yes

𝑎

𝑏

𝑥

𝑦

𝑧

𝑐

Proof of Hall’s theorem (1)

50

• Part 1. perfect matching exists ⇒ Hall’s condition
• Simple prove by contradiction: assume Hall’s condition doesn’t hold

• Then there exists a subset 𝑆 ⊆ 𝐿 such that |𝑁 𝑆 | < |𝑆|

• But if a perfect matching exists, every vertex in 𝑆 needs to match with
a distinct vertex in 𝑁 𝑆 , which means |𝑁 𝑆 | ≥ |𝑆|, a contradiction

Proof of Hall’s theorem (2)

51

• Part 2. Hall’s condition ⇒ perfect matching exists

• The set of balanced bipartite graphs, ℬ, can be alternatively defined as:

• Base Case: 𝐺 = (∅ ∪ ∅, ∅) ∈ ℬ (the “empty graph”)

• Constructor Case: If 𝐺 = (𝐿 ∪ 𝑅, 𝐸) ∈ ℬ, then:
• 𝐺 = ((𝐿 ∪ 𝑙) ∪ (𝑅 ∪ 𝑟), 𝐸 ∪ 𝐸′) ∈ ℬ

(“adding one vertex to each side, then add some edges”)

• … this is hard to work with! We will instead resort to a (weak) induction

Proof of Hall’s theorem (2)

52

• Part 2. Hall’s condition ⇒ perfect matching exists for all 𝐿 = 𝑅 = 𝑛

• Proof:
• Base Case. 𝑛 = 0. For 𝐺 = (∅ ∪ ∅, ∅), ∅ is a perfect matching (yes it is)

• Inductive Hypothesis. Assume the theorem holds for 𝑛 = 𝑘 for 𝑘 ≥ 0.

• Induction Step. Consider a graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) with 𝐿 = 𝑅 = 𝑘 + 1.
• Case 1. Hall’s condition is loosely satisfied (equation never holds).

• Case 2. Hall’s condition is tightly satisfied (equation holds for some 𝑆).

Proof of Hall’s theorem (2-1)

53

• Part 2-1. Hall’s condition loosely satisfied ⇒ perfect matching exists

• Induction Step. Consider a graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) with 𝐿 = 𝑅 = 𝑘 + 1
such that for all 𝑆 ⊆ 𝐿 we have |𝑁 𝑆 | > |𝑆|.

• Pick an arbitrary left vertex 𝑙 ∈ 𝐿 and match 𝑙 with an arbitrary right vertex 𝑟 ∈ 𝑁(𝑙)

• Consider the remainder graph 𝐺′ = (𝐿 − {𝑙} ∪ 𝑅 − {𝑟}, 𝐸′) with 𝑘 vertices each side.

• Now for all 𝑆′ ⊆ 𝐿 − {𝑙}, we have 𝑁′(𝑆′) ≥ 𝑁 𝑆′ − 1 ≥ |𝑆′|.

• In other words, Hall’s condition is still satisfied (not necessarily loosely) for 𝐺′.

• Any perfect matching of 𝐺′ plus (𝑙, 𝑟) is a perfect matching for 𝐺!

Proof of Hall’s theorem (2-2 - skeleton)

54

• Part 2-2. Hall’s condition strictly satisfied ⇒ perfect matching exists

• Induction Step. Consider a graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) with 𝐿 = 𝑅 = 𝑘 + 1
such that for all 𝑆 ⊆ 𝐿 we have |𝑁 𝑆 | ≥ |𝑆| and the equality holds for at
least one 𝑆.

• Find a perfect matching between |𝑆| and |𝑁 𝑆 |

• Consider the rest of the graph without |𝑆| and |𝑁 𝑆 |
• We can show Hall’s condition still holds for this remainder graph

• Therefore there is a perfect matching for this remainder graph; combine the two parts gives a
perfect matching for the entire graph

	Slide 1
	Slide 2: Logistic Bulletin Board
	Slide 3
	Slide 4: Why graphs?
	Slide 5: Graphs in CS201/230
	Slide 6: Focus of CM6
	Slide 7: Terminology Musing
	Slide 8: Undirected vs. directed
	Slide 9: PI: What kind of graph
	Slide 10: Downward closed graph properties
	Slide 11: Downward closed graph properties
	Slide 12: “Upward closed” graph properties
	Slide 13: Usefulness of closed graph properties
	Slide 14: Wait, we can do that?
	Slide 15: Recursively defined structures
	Slide 16: Inducting on recursively defined structures
	Slide 17: Inducting on recursively defined structures
	Slide 18: Inducting on recursively defined structures
	Slide 19: Inducting on recursively defined structures
	Slide 20: weak induction is structural induction
	Slide 21
	Slide 22: Logistic Bulletin Board
	Slide 23
	Slide 24
	Slide 25: Connectivity
	Slide 26: Modeling the world
	Slide 27: k minus connectivity
	Slide 28: PI: k-connectivity
	Slide 29: The butterfly graph
	Slide 30: Edge cut and vertex cut
	Slide 31: Edge cut and vertex cut
	Slide 32: Edge cut and vertex cut
	Slide 33: Coloring
	Slide 34: k minus colorability
	Slide 35: PI: k-colorability
	Slide 36: Inducting on graphs
	Slide 37: Recursively defined structures
	Slide 38: An alternative recursive definition
	Slide 39: Inducting on graphs
	Slide 40: Matching
	Slide 41: Matching
	Slide 42: Matching
	Slide 43: Matching
	Slide 44: Matching
	Slide 45: Coloring planar graphs
	Slide 46: Four-color theorem
	Slide 47: Bipartite Matching
	Slide 48: Hall’s theorem (for the special case absolute value cap L , end absolute value equals vertical bar cap R vertical bar close paren
	Slide 49: Terminology Practice
	Slide 50: Proof of Hall’s theorem (1)
	Slide 51: Proof of Hall’s theorem (2)
	Slide 52: Proof of Hall’s theorem (2)
	Slide 53: Proof of Hall’s theorem (2-1)
	Slide 54: Proof of Hall’s theorem (2-2 - skeleton)
	Slide 57
	Slide 58: cap R subset or equals cap A. times cap A.
	Slide 59: Reflexive
	Slide 60: Irreflexive
	Slide 61: Symmetric
	Slide 62: Anti-Symmetric
	Slide 63: Asymmetric = Anti-Symmetric + Irreflexive
	Slide 64: Transitive
	Slide 65: Transitive
	Slide 66: Transitive
	Slide 67: Transitive
	Slide 68: Transitive
	Slide 69: Transitive + Symmetric
	Slide 70: Transitive + Symmetric
	Slide 71: Transitive + Symmetric + Reflexive
	Slide 72: Transitive + Symmetric + Reflexive = Equivalence
	Slide 73: Transitive + Anti-symmetric = Partial Order
	Slide 74: PI: graphs meet relations
	Slide 77: Recursively Defined Structures, Revisited
	Slide 78: Partial Order of Recursively Defined Structures
	Slide 79: Topological Sort of Recursively Defined Structures
	Slide 80: strong induction = structural induction
	Slide 81: All inductions are the same
	Slide 82: If weak induction = strong induction,

