
I'm a junior computer science major with a minor

in environmental policy. At Duke, I'm a WXDU DJ,

Chronicle Photographer, and on Club Ski & Board.

Class starts after this song

The Strokes – Hard to Explain (2001)

requested by Sydney Lester (TA-of-CM5)

I'm a Sophomore from Hong Kong. In my free time I enjoy

running, coding cool projects and spending time with friends.

I'm very excited to be a TA for this course this semester.

Vincent Capol (TA-of-CM5)

Logistics Bulletin/Recap
2

• Exam 1 results out
• 6/6 → E; 4/6 → S, see Canvas announcement

• Assignments:
• Round 1 and Round 2 on Gradescope

• Anything post Round 2: come to me (after class or in consulting hours)
with a working answer

• Try collaborating with a teammate if you haven’t!
• Megathread on Ed to find partners

• (From now on and retroapplicable) you can E-out a CM in pairs

CS230 Spring 2024
Module 05: Inductions

Why inductions?
• It is one (very powerful) proof method.

• It is the one thing that you should take away from CS230
if you can only take one

• Inductions are for proving a general statement
(or, in logic terms, a quantified forall predicate)

4

Style Musing: proving 𝑃 𝑛 for all 𝑛 ≥ 𝑎

5

• “AIDMA style”: preferred

• Base Case: 𝑃(𝑎)
• Inductive Hypothesis: Let 𝑘 ≥ 𝑎, and assume 𝑃(𝑘) holds
• Inductive Step: Then… by inductive hypothesis… thus 𝑃(𝑘 + 1) holds

• “MCS style”: (not wrong)

• Base Case: 𝑃(𝑎)
• Inductive Case/Step: Assume 𝑃(𝑛) holds for 𝑛 ≥ 𝑎.

Then… (by inductive hypothesis…) … thus 𝑃(𝑛 + 1) holds

The "n=k" case

PI: Induction Step

6

let k = a+1

𝑃(𝑘 − 1) → 𝑃 𝑘 or 𝑃(𝑘) → 𝑃 𝑘 + 1 ?

7

• As you see in the PI,
this is a moot debate without specifying the range of 𝑘

• Similar to the style discussion, there is no one correct approach

• Sanity check: check the statements can be used to prove
the first case not covered by the base cases

PI: Induction Step Again

8

let k=b+1

Induction meets asymptotic notations

9

• Recall the MergeSort recurrence relation:

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂 𝑛 , 𝑇 1 = 1

• We have seen in CM3 how to solve to 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)
by substitution/tree method/Master theorem.

• We can also prove that by guess-and-verify induction

10
• Given: 𝑇 𝑛 ≤ 2𝑇

𝑛

2
+ 𝑐𝑛, 𝑇 1 = 1

• Prove: 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

• Let 𝑐′ = 𝑐 + 1. Assume base 2 for all logs below.

• Base case(s): 𝑇 21 ≤ 2𝑇 1 + 𝑐21 = 2 𝑐 + 1 ≤ 2𝑐′ ∙ 21 log 21

• Inductive Hypothesis: Assume 𝑇 2𝑘 ≤ 𝑐′ ∙ 2𝑘 log 2𝑘 for 𝑘 ≥ 1

• Inductive Step: 𝑇 2𝑘+1 ≤ 2𝑇 2𝑘 + 𝑐2𝑘+1

≤ 2𝑐′ ∙ 2𝑘 log 2𝑘 + 𝑐′2𝑘+1

= 𝑐′ ∙ 2𝑘+1 log 2𝑘 + 𝑐′2𝑘+1

= 𝑐′ ∙ 2𝑘+1 log 2𝑘 + 1
= 𝑐′ ∙ 2𝑘+1(log 2𝑘+1)

≤ 𝑐′ ∙ 𝑛 log 𝑛 , ∀𝑛 ≥ 𝑛0 where 𝑛 is a power of 2

Applying recurrence relation

We can write the recurrence this way because we can find such c so that

 the O(n) term is always bounded from above by cn

Applying inductive hypothesis

This step is because we are operating with base 2

Unlike the examples you saw earlier in which we prove a predicate for n=1, n=2, n=3...,

here we are proving a predicate for n=2^1, n=2^2, n=2^3...

and therefore our inductive step goes from n=2^k to n=2^(k+1).

Actually, let c' = c could also work,

but we did c' = c+1 to explicitly show

that the two constants do not

necessarily need to be equal;

c is the constant for the O(n) term

in the rec relation, c' is the constant

for the claim that we're proving

I am a first-year biostatistics master’s student. My

research interests include genetics and improving

public health with data science. Outside of school, I

like to travel, listen to music, and explore new places.

Class starts after this song

The Score – Revolution (2017)

requested by Elisa Ma (Head TA/TA-of-CM5)

I am excited to TA CS230 this semester, because it covers some of my favorite

topics in all of math and CS. I am a math major, so I'm always happy to talk

about obscure proof questions. Outside of math, I'm a film enthusiast, baseball

fan, and amateur chef. I also share a birthday with the inventor of the Internet!

Hari Srinivasan

(TA-of-CM5)

How do we go about CS230 in Spring 24

12

Prof. X’s CS230

Prof.
Z’s

CS230

Prof.
Y’s
CS230

Core Modules (CMs, 8 in total):
“What everyone should learn”

Elective Modules (EMs):
“Useful for someone/some field”

Elective ModuleElective Module

Elective Module

Your own CS230

https://sites.duke.edu/compsci230sp2024/course-description/

What happens for an EM (more ad-hoc)

13

Class

Material

PL homework

or Canvas quiz
(autograded)

Assignment
(manually graded)

No need to prepare

CMs already prepared you

Some sync (in-class), some async (video/reading), some hybrid

might be implemented in a recitation time slot

14

Sync (see course calendar) Async (released in Canvas in early March)

Hybrid (3/8 for sync part)

E F

A D

B

C

4/12

4/19

https://sites.duke.edu/compsci230sp2024/

More EM support/resources

15

• Some TAs specialized in each EM
• Post spring break, we will indicate on the consulting hours calendar

which TAs’ hours you can go to for help on which EM

• Ed is of course always open

• The last recitation (4/22) is an EM breakout day
• EM-specialized TAs will station the recitation classrooms

Mid-semester Survey

16

• Released after today’s class

• Due by end of February (2/29 11:59pm)

• Required as part of the Everything outside the modules module

PI: Weak vs. Strong Induction

17

Misconception!

18

• The number one misconception in learning inductions
is to think that weak = 1 base case, strong = 2+ base cases.

• That is NOT TRUE.
Both weak and strong induction
can have one or more base cases.

Example:
weak induction
1 base case

19

Example:
strong induction
1 base case

20

Example:
strong induction
2 base cases

21

Example:
weak induction
2 base cases?

22

weak induction = strong induction

23

• We can always simulate a strong induction by a weak induction
using a change-of-predicate technique:

• If the given strong inductive step is
(𝑃 𝑎 ∧ 𝑃 𝑎 + 1 ∧ ⋯ ∧ 𝑃 𝑘) → 𝑃(𝑘 + 1)

• Define the predicate 𝑄 𝑘 ≔ (𝑃 𝑎 ∧ 𝑃 𝑎 + 1 ∧ ⋯ ∧ 𝑃 𝑘)

• The proof is now a weak induction using the inductive step
𝑄 𝑘 → 𝑄(𝑘 + 1)

weak induction = strong induction

24

• We can always simulate a strong induction by a weak induction
using a change-of-predicate technique.

• This means everything provable by strong induction can be
proved by a weak induction (using the technique we just saw)

• In the other direction: everything provable by a weak induction
can also be proved by strong induction
(assuming more than needed, which is bad practice but valid)

Example:
weak induction
2 base cases?

25

Example:
strong induction
2 base cases

26

If weak induction = strong induction,

27

• why do we teach/learn them as separate?

• Equally powerful, equally correct,
NOT necessarily equally comprehensible

• Certain inductions more readable in weak/strong form

What can go wrong with inductions?

28

• “Bogus induction”: a direct proof cosplaying as an induction

• Stating a strong hypothesis
when the inductive step only needs the weak hypothesis

• Stating a weak hypothesis
when the inductive step needs the strong hypothesis

“Bogus induction”

• Prove: 1 + 2 + ⋯ + 𝑛 =
𝑛 𝑛+1

2
, ∀𝑛 ∈ ℕ

• Base case: 1 =
1(1+1)

2

• Inductive hypothesis: let 𝑘 ≥ 1 and assume 1 + 2 + ⋯ + 𝑘 =
𝑘 𝑘+1

2
• Inductive step: 1 + 2 + ⋯ + 𝑘 + 𝑘 + 1

=
1 + 𝑘 + 1 + 2 + 𝑘 + ⋯ 𝑘 + 1 + 1

2
=

(𝑘 + 2)(𝑘 + 1)

2

29

Stating a strong hypothesis when the inductive
step only needs the weak hypothesis

• This is bad practice (assuming more than needed)

• Not technically incorrect; still a valid proof (worth an S)

30

Stating a weak hypothesis when the inductive step
needs the strong hypothesis

• This is incorrect; the inductive step doesn’t go through

• Not a valid proof, will get N

31

Induction vs. other proof techniques

32

• Inductions are NOT mutually exclusive with other proof
techniques such as by cases, by contradiction, by construction…

• The inductive step of an induction proof is itself a proof
• Prove the inductive step by cases

• Prove the inductive step by contradiction

• …

Peer discussion: Strengthening IH

33

Failed attempt

• Base case: 1 = 12.

• Inductive hypothesis:
let 𝑘 ≥ 1 and assume 1 + 3 + ⋯ + 𝑘 = 𝑚2 for some 𝑚 ∈ ℕ.

• Inductive step: for 𝑛 = 𝑘 + 2 (!),
1 + 3 + ⋯ + 𝑘 + 𝑘 + 2 = 𝑚2 + 𝑘 + 2 … ?

34

Successful attempt

• Base case: 1 = 12.

• Strengthened Inductive hypothesis:

let 𝑘 ≥ 1 and assume 1 + 3 + ⋯ + 𝑘 = (
𝑘+1

2
)2.

• Inductive step: for 𝑛 = 𝑘 + 2,

1 + 3 + ⋯ + 𝑘 + 𝑘 + 2 = (
𝑘+1

2
)2+𝑘 + 2 … (some algebra) … = (

𝑘+3

2
)2

35

More general inductions?

36

• Both weak/strong induction (now we know they’re “equal”)
deal with statements of the form 𝑃(𝑛) for 𝑛 ∈ ℕ (or some subset of ℕ)

• What about:
• 𝑃(𝑇) for all trees 𝑇?

• 𝑃(𝑆) for all binary strings 𝑆?

• We can “induct on” more (discrete) structures than just numbers

Recursively defined sets

37

• Now let’s go back to a set theory context

• Some sets can be defined recursively

• Example 1. The set of even numbers, 𝔼, can be defined as:

• Base Case: 0 ∈ 𝔼

• Constructor Case: If 𝑥 ∈ 𝔼, then 𝑥 − 2 ∈ 𝔼 and 𝑥 + 2 ∈ 𝔼.

Recursively defined sets

38

• Now let’s go back to a set theory context

• Some sets can be defined recursively

• Example 1. The set of even numbers, 𝔼, can be defined as:

• Base Case: 2 ∈ 𝔼

• Constructor Case: If 𝑥 ∈ 𝔼, then 𝑥 − 2 ∈ 𝔼 and 𝑥 + 2 ∈ 𝔼.

Recursively defined sets

39

• One more example on sets

• Example 2. The set of (nonnegative) powers of 2, 𝑃, can be defined as:

• Base Case: 1 ∈ 𝑃

• Constructor Case: If 𝑥 ∈ 𝑃, then 2𝑥 ∈ 𝑃

Recursively defined structures

40

• Same idea, but the set now contains objects, not just numbers

• Example 3. The set of (undirected) binary trees, 𝒯, can be defined as:

• Base Case: 𝑇 = (∅, ∅) ∈ 𝒯 (the “empty tree”)

• Constructor Case: If 𝑇1, 𝑇2 ∈ 𝒯, then ∈ 𝒯

𝑇1 𝑇2

Recursively defined structures

41

• Example 4. The set of (undirected) graphs, 𝒢, can be defined as:

• Base Case: 𝐺 = (∅, ∅) ∈ 𝒢 (the “empty graph”)

• Constructor Case: If 𝐺 = (𝑉, 𝐸) ∈ 𝒢, then:
• 𝐺′ = (𝑉 ∪ 𝑣 , 𝐸) ∈ 𝒢 (“add a vertex”)

• 𝐺′ = (𝑉, 𝐸 ∪ 𝑒) ∈ 𝒢 where 𝑒 = 𝑢, 𝑣 , 𝑢, 𝑣 ∈ 𝑉 (“add an edge”)

Recursively defined structures

42

• Example 5. The set of balanced parentheses, ℬ, can be defined as:

• Base Case: 𝜆 ∈ ℬ (the “empty string”)

• Constructor Case: If strings 𝑠1, 𝑠2 ∈ ℬ, then:
• (𝑠1) ∈ ℬ

• 𝑠1𝑠2 ∈ ℬ

	Slide 1
	Slide 2: Logistics Bulletin/Recap
	Slide 3
	Slide 4: Why inductions?
	Slide 5: Style Musing: proving cap P of n for all n greater than or equal to a.
	Slide 6: PI: Induction Step
	Slide 7: cap P open paren k minus 1 close paren goes to cap P of k or cap P open paren k close paren goes to cap P open paren k plus 1 , close paren ?
	Slide 8: PI: Induction Step Again
	Slide 9: Induction meets asymptotic notations
	Slide 10
	Slide 11
	Slide 12: How do we go about CS230 in Spring 24
	Slide 13: What happens for an EM (more ad-hoc)
	Slide 14
	Slide 15: More EM support/resources
	Slide 16: Mid-semester Survey
	Slide 17: PI: Weak vs. Strong Induction
	Slide 18: Misconception!
	Slide 19: Example: weak induction 1 base case
	Slide 20: Example: strong induction 1 base case
	Slide 21: Example: strong induction 2 base cases
	Slide 22: Example: weak induction 2 base cases?
	Slide 23: weak induction = strong induction
	Slide 24: weak induction = strong induction
	Slide 25: Example: weak induction 2 base cases?
	Slide 26: Example: strong induction 2 base cases
	Slide 27: If weak induction = strong induction,
	Slide 28: What can go wrong with inductions?
	Slide 29: “Bogus induction”
	Slide 30: Stating a strong hypothesis when the inductive step only needs the weak hypothesis
	Slide 31: Stating a weak hypothesis when the inductive step needs the strong hypothesis
	Slide 32: Induction vs. other proof techniques
	Slide 33: Peer discussion: Strengthening IH
	Slide 34: Failed attempt
	Slide 35: Successful attempt
	Slide 36: More general inductions?
	Slide 37: Recursively defined sets
	Slide 38: Recursively defined sets
	Slide 39: Recursively defined sets
	Slide 40: Recursively defined structures
	Slide 41: Recursively defined structures
	Slide 42: Recursively defined structures

