Class starts after this song

I'm a Sophomore from Hong Kong. In my free time | enjoy
running, coding cool projects and spending time with friends.
I'm very excited to be a TA for this course this semester.

L Vincent Capol (TA-of-CM5)

The Strokes — Hard to Explain (2001) <.
requested by Sydney Lester (TA-of-CM5) .15

(I'm a junior computer science major with a minor
In environmental policy. At Duke, I'm a WXDU DJ,
_Chronicle Photographer, and on Club Ski & Board.




Logistics Bulletin/Recap

« Exam 1 results out
e 6/6 - E: 4/6 - S, see Canvas announcement

» Assignments:
 Round 1 and Round 2 on Gradescope
« Anything post Round 2: come to me (after class or in consulting hours)

with a working answer
* Try collaborating with a teammate if you haven't!

* Megathread on Ed to find partners
* (From now on and retroapplicable) you can E-out a CM In pairs
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CS230 Spring 2024
Module 05: Inductions
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Why Iinductions?
* |t Is one (very powerful) proof method.

* |t IS the one thing that you should take away from CS230
If you can only take one

* Inductions are for proving a general statement
(or, In logic terms, a quantified forall predicate)

Duke




Style Musing: proving P(n) foralln > a

* "AIDMA style”: preferred

* Base Case: P(a) Mg =" s
* Inductive Hypothesis: Let k > a, and assume P (k) holds
* Inductive Step: Then... by inductive hypothesis... thus P(k + 1) holds

e “MCS Style”: (not wrong)
* Base Case: P(a)

* Inductive Case/Step: Assume P(n) holds forn = a.
Then... (by inductive hypothesis...) ... thus P(n + 1) holds
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Pl: Induction Step

n 1 point

Consider a (weak/ordinal) induction proof with only one base case Plf_ca}.
What among the following could be a valid inductive step for proving Pkn] foralln > a?

v P(k) = P(k+1),VEk > a
(] P(k) = P(k+1),Vk>a

M Plk—1)— P(k),Vk > a letk = a+1
v/ Plk—1)— P(k),Vk>a

Duke




P(k—1)—- P(k)orP(k) - P(k+1)7?

* As you see in the PI,
this is a moot debate without specifying the range of k

 Similar to the style discussion, there is no one correct approach

» Sanity check: check the statements can be used to prove
the first case not covered by the base cases
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Induction Step Again

n 1 point

Consider a (strong) induction proof with base cases P(a) A P(a+ 1) A ... A P(b).
What among the following could be a valid inductive step for proving P{n:l foralln = a?

Q( (P(a) A Pa+1)A... A P(k) — P(k+1), Vk > b

(PL&} APla+1)A...AP(k)) %W‘v‘k > b
u/ (P(a) A Pa+1) A ?P{k 1)) — P(k), Vk S letkebs
Y (P(a)APa+1)A...AP(k—1)) — P(k), Vk > b
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Induction meets asymptotic notations

* Recall the MergeSort recurrence relation:

T(n) = 2T (g) +oMm),T(1) = 1

* We have seen in CM3 how to solve to T(n) = O(nlogn)
by substitution/tree method/Master theorem.

* We can also prove that by guess-and-verfy induction
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We can write the recurrence this way because we can find such c so that

. e O(n) term is always bounded from above by cn 10
° leen T(n) S ZT (g) + cn, T(l) _ the O(n) t lways bounded f bove by

* Prove: T(n) <c¢'-nlogn,vn = nywhere n is a power of 2

e Let ¢’ = ¢ + 1. Assume base 2 for all logs below.

« Base case(s): T(2') < 2T(1) + c2t =2(c + 1) < 2¢' - 2t log 21
- Inductive Hypothesis: Assume T(2°) < ¢’ - 2" log 2" for k =

+ Inductive Step: T/( ) 2T(2") + ¢ Applyingrecurence elation

Actually, let c' = c could also work, K+1

but we did ¢' = c+1 to explicitly show __Z log + C 2 . Applying inductive hypothesis

that the two constants do not K +1 K +1

necessarily need to be equal; C 2 log 2 + c 2

c is the constant for the O(n) term k + 1 k

in the rec relation, c' is the constant C 2 log 2 + 1 : : : :

for the claim that we're proving . k+1 1 k+1 2 This step is because we are operating with base 2
=c' - 2" (log2"™")

Unlike the examples you saw earlier in which we prove a predicate for n=1, n=2, n=3..,,
here we are proving a predicate for n=2"1, n=2/2, n=2/3...
and therefore our inductive step goes from n=2~k to n=2(k+1).
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Class starts after this song

| am excited to TA CS230 this semester, because it covers some of my favorite
topics in all of math and CS. | am a math major, so I'm always happy to talk

about obscure proof questions. Outside of math, I'm a film enthusiast, baseball
fan, and amateur chef. | also share a birthday with the inventor of the Internet!

~

The Score — Revolution (2017) 48y
requested by Elisa Ma (Head TA/TA-of-CM5) &=

i
A
£

Hari Snivasan
(TA-of-CM5)

4 | am a first-year biostatistics master’s student. My

research interests include genetics and improving
public health with data science. Outside of school, |
\_ like to travel, listen to music, and explore new places.

Duke



How do we

12

go about C5230 In Spring 24

Core Modules (CMs,

“What everyone should learn”

):

“Useful for someone/some field”

Elective Modules (EMS):

/" Prof. X's 05230: <

|
\

Elective Module

\ Prof. Prof.
Y’ Z’s \
c§23o 65238 A _
Elective Module

Your own CS230

Z

Elective Module

Duke


https://sites.duke.edu/compsci230sp2024/course-description/
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What happens for an EM (more ad-hoc)

Some sync (in-class), some async (video/reading), some hybrid

PL homework

or Canvas quiz
autograded

Assignment
(manually graded)

No need to prepare
CMs already prepared you

Duke




Hybrid (3/8 for sync part) 14

Module = C'%raph app. in Al

Module = Graph app. in robotics Module = Prob. app. in hashing and caching

Extremely interested
Very interested
Moderately interested
Slightly interested
Not interested at all

Preference

Module = Prob. app. in privacy Module = Num. theory & cryptography odule = Language, automata, eempiated
© Extremely interested
2 Very interested
g Moderately interested
©  Slightly interested
& Not interested at all
Module = Voting and social choice theory Module = Constraint satisfication Module = FSMs enre-Mearcev-eheins-
© Extremely interested
e Very interested
g Moderately interested
E Slightly interested
& Not interested at all
0 10 20 30 40 0 10 20 30 40
count count count
Sync (see course calendar) Async (released in Canvas in early March)

Duke



https://sites.duke.edu/compsci230sp2024/
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More EM support/resources

« Some TAs specialized in each EM

» Post spring break, we will indicate on the consulting hours calendar
which TAs’ hours you can go to for help on which EM

* Ed Is of course always open

* The last recitation (4/22) is an EM breakout day
* EM-specialized TAs will station the recitation classrooms

Duke
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Mid-semester Survey

* Released after today’s class
* Due by end of February (2/29 11:59pm)

* Required as part of the Everything outside the modules module

Duke
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Pl vS. Strong Induction

1 point

What are the difference(s) between weak and strong inductions? (Select all that apply)

| | Weakinduction has one base case; strong induction has multiple base cases

| | Weakinduction assumes one case in the inductive hypothesis; strong induction assumes more than one cases

Duke
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Misconception!

* The number one misconception in learning inductions
IS to think that weak = 1 base case, strong = 2+ base cases.

* That iIs NOT TRUE.
Both and strong induction
can have one or more base cases.

Duke




P4.1. Induction Proof on Geometric Sum revised

Drag and drop all of the blocks below to create a proof by induction of the following statement. 19

Claim: for all natural numbers m.

i 2(_7)j B 1— (;7):1}1

Example:
weak Induction
1 base case

Inductive Predicate: P(n) : E?—o 2-=7) = L_:T‘—H

Base case: At =0, E;‘=0 2(—7)j =2 and 1—_(-_??)"—“ = # — 2, so the base case, P(0),
holds

. - 1
Inductive Hypothesis: Supposs that P(n) : E;"—D 2(—=7Ty = L‘IK holdsformn =0,1,...,k

. k+3
Inductive Step: We need to show that P(k + 1) : Ef’% 2-7) = % holds

The left hand side is 50 2(=7)7 = Y% ( 2(—7)f + 2(—7)***

By the inductive hypothesis we have Z_’: 02{—7}j = %TJM. So then substituting we get
1 e+l 1 4+l +8 41 1477 k+1 1 a2
_ (4‘0 +2{_7)k+1 _ 17 ; (-m 1 (4 ) (4‘0

which simplifies to =

. k+1
So Eiﬂ'& 2[—7)3 = % which was what we needed to show.

Duke
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u
Exal I l p I e ] Example 8.24. Show that every integer n = 2 can be written as the product of primes.
t - d t. Proof: Let P(n) be the statement “n can be written as the product of primes.”
S ro n g I n u C I O n We need to show that for all n = 2, P(n) is true.

Since 2 is clearly prime, it can be written as the product of one prime. Thus P(2)

1 base case

Assume [P(2) A P(3) A -+ A P(k —1)] is true for k > 2. In other words, assume all
of the numbers from 2 to k¥ — 1 can be written as the product of primes.

We need to show that P(k) is true. If k is prime, clearly P(k) is true. If k is not
prime, then we can write k = a - b, where 2 < a < b < k. By hypothesis, P(a) and
P(b) are true, so a and b can be written as the product of primes. Therefore, k can
be written as the product of primes, namely the primes from the factorizations of
a and b. Thus P(k) is true.

Since we proved that P(2) is true, and that [P(2) AP(3)A---AP(k—1)] — P(k) if
k = 2, by the principle of mathematical induction, P(n) is true for all n > 2. That
is, every integers n > 2 can be written as the product of primes. O
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P4.2. Induction Proof on Recurrence 2 1

DOrag and drop some of the blocks below to create a proof by induction of the following statement. Note, not
all blocks maybe needed to establish this proof.

" Let function f : N — Z be defined by f(0) = 2, f(1) = 7. and f(n) = f(n — 1) + 2f(n — 2). forn > 2.
Xal I l p ‘ E . Prove that f(n) = 3 - 2" + (—1)"*! for any natural number n.
strong Induction
g The induction hypothesis: Suppose that f(n) = 3 - 2" + (—1)"* forn > 0
2 b aS e C aS e S Base case: For m = 0 we have, 3+ 2% + (—1)! = 3 — 1 = 2 which is equal to f(0). So the claim

holds.

Inductive step: We need to show that f(k) = 3 - 2% + (=1)F

So f(k) =3 - 2F + (=1)* which is what we wantad to show

Construct your solution here: @

Proof by induction on 1.

Base cases: Forn = 0 we have, 320 + g—

1)! = 3 — 1 = 2 which is equal to f(0). So the claim
holds. Forn = 1, we have 321 + (—1)* =6 +

1 = T which is equal to f{1).So the claim holds.

Duke
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Example:
weak induction
2 base cases?

Duke
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weak induction = strong induction

* We can always simulate a strong induction by a weak induction
using a change-of-predicate technique:

* |f the given strong inductive step Is
(P(a)AP(a+1)A--AP(k)) » P(k+1)

» Define the predicate Q(k) := (P(a) AP(a+ 1) A---AP(k))
* The proof is now a weak induction using the inductive step

Q(k) = Q(k + 1)

Duke
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weak induction = strong induction

* We can always simulate a strong induction by a weak induction
using a change-of-predicate technique.

* This means everything provable by strong induction can be
proved by a weak induction (using the technigue we just saw)

* |n the other direction: everything provable by a weak induction
can also be proved by strong induction
(assuming more than needed, which is bad practice but valid)

Duke
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Example:
weak induction
2 base cases?

Duke




P4.2. Induction Proof on Recurrence 26

DOrag and drop some of the blocks below to create a proof by induction of the following statement. Note, not
all blocks maybe needed to establish this proof.

" Let function f : N — Z be defined by f(0) = 2, f(1) = 7. and f(n) = f(n — 1) + 2f(n — 2). forn > 2.
Xal I l p ‘ ! . Prove that f(n) = 3 - 2" + (—1)"*! for any natural number n.

I i n I u t i n Drag from here:
The induction hypothesis: Suppose that f(n) = 3 - 2" + (—1)"* forn > 0
2 b aS e C aS e S Base case: For m = 0 we have, 3+ 2% + (—1)! = 3 — 1 = 2 which is equal to f(0). So the claim

holds.

Inductive step: We need to show that f(k) = 3 - 2% + (=1)F

So f(k) =3 - 2F + (=1)* which is what we wantad to show

Construct your solution here: @

Proof by induction on 1.

Base cases: Forn = 0 we have, 320 + g—

1)! = 3 — 1 = 2 which is equal to f(0). So the claim
holds. Forn = 1, we have 321 + (—1)* =6 +

1 = T which is equal to f{1).So the claim holds.

Duke
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If weak induction = strong induction,

« why do we teach/learn them as separate?

» Equally powerful, equally correct,
NOT necessarily equally comprehensible

 Certain Inductions more readable in weak/strong form

Duke
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What can go wrong with inductions?

* “Bogus induction”. a direct proof cosplaying as an induction

e Stating a strong hypothesis
when the inductive step only needs the

e Stating a
when the inductive step needs the strong hypothesis

Duke
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"Bogus induction”

Prove: 1+ 2+ --+n = "("2+1),Vn €N

1(14+1)

Base case: 1 =
k(k+1)
2

Inductive hypothesis: letk > 1 and assume 1+ 24+ -+ k =
Inductive step: 1+ 2+ -+ k+(k+1)

I+ Gk+D+2+k+(k+D+1] (k+2)(k+1)
2 h 2

Duke




30

Stating a strong hypothesis when the inductive
step only needs the

 This Is bad practice (assuming more than needed)
* Not technically incorrect; still a valid proof (worth an S)

Duke
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Stating a when the inductive step
needs the strong hypothesis

 This is incorrect; the inductive step doesn’t go through
* Not a valid proof, will get N

Duke
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Induction vs. other proof techniques

* Inductions are NOT mutually exclusive with other proof
techniques such as by cases, by contradiction, by construction...

* The inductive step of an induction proof is itself a proof
* Prove the inductive step by cases
* Prove the inductive step by contradiction

Duke
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Peer discussion: Strengthening IH



Falled attempt

» Base case: 1 = 1°.

nductive hypothesis:
etk>1andassume 1+ 3+ -+ k = m? for some m € N.

nductive step: forn =k + 2 (1),
1+3+-+k+(k+2)=m?+k+2..?

34
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Successful attempt

- Base case: 1 = 1%.
 Strengthened Inductive hypothesis:
letk >1andassume 1+ 3+ -+ k = (%)2.

* Inductive step: forn = k + 2,

1+3+-+k+(k+2)= (%)Z-HC + 2 ... (some algebra) ... = —)2

Duke
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More general inductions?

» Both /strong induction (now we know they're “equal”)
deal with statements of the form P(n) for n € N (or some subset of N)

* What about:
* P(T) for all trees T?
« P(S) for all binary strings S?

* We can “induct on” more (discrete) structures than just numbers

Duke
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Recursively defined sets

* Now let’s go back to a set theory context
« Some sets can be defined recursively

« Example 1. The set of even numbers, E, can be defined as:
e Base Case: 0 € E
e Constructor Case: lIfx e E,thenx—2 e Eand x + 2 € .

Duke
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Recursively defined sets

« Example 1. The set of even numbers, E, can be defined as:
e Base Case: 2 € E
e Constructor Case: lIfx e E,thenx—2 e Eand x + 2 € .

Duke
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Recursively defined sets

* One more example on sets

« Example 2. The set of (nonnegative) powers of 2, P, can be defined as:
- Base Case: 1 eP
» Constructor Case: If x € P,then 2x € P

Duke
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Recursively defined structures

« Same idea, but the set now contains objects, not just numbers
 Example 3. The set of (undirected) binary trees, 7, can be defined as:
Base Case: T=(0,0) eT (the “empty tree”)
e Constructor Case: If T4, T, € T, then ET

Duke
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Recursively defined structures

« Example 4. The set of (undirected) graphs, G, can be defined as:
 Base Case: G = (@,0) € G (the “empty graph”)
* Constructor Case: If 6 = (V,E) € G, then:
e G'=WU{vLE)EG (“add a vertex”)
« G'=(V,EU{e}) eGwheree = (u,v),u,v €V (“add an edge”)

Duke




42

Recursively defined structures

« Example 5. The set of balanced parentheses, B, can be defined as:
e Base Case: A € B (the “empty string”)

e Constructor Case: If strings s4,s, € B, then:
* (51) €EB
* 515, €EB

Duke
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