
I'm a junior computer science major with a minor 

in environmental policy. At Duke, I'm a WXDU DJ, 

Chronicle Photographer, and on Club Ski & Board.

Class starts after this song

The Strokes – Hard to Explain (2001)

requested by Sydney Lester (TA-of-CM5)

I'm a Sophomore from Hong Kong. In my free time I enjoy 

running, coding cool projects and spending time with friends. 

I'm very excited to be a TA for this course this semester.

Vincent Capol (TA-of-CM5)



Logistics Bulletin/Recap
2

• Exam 1 results out 
• 6/6 → E; 4/6 → S, see Canvas announcement

• Assignments:
• Round 1 and Round 2 on Gradescope

• Anything post Round 2: come to me (after class or in consulting hours)
with a working answer

• Try collaborating with a teammate if you haven’t!
• Megathread on Ed to find partners

• (From now on and retroapplicable) you can E-out a CM in pairs



CS230 Spring 2024
Module 05: Inductions



Why inductions?
• It is one (very powerful) proof method.

• It is the one thing that you should take away from CS230 
if you can only take one

• Inductions are for proving a general statement 
(or, in logic terms, a quantified forall predicate)

4



Style Musing: proving 𝑃 𝑛 for all 𝑛 ≥ 𝑎
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• “AIDMA style”: preferred

• Base Case: 𝑃(𝑎)
• Inductive Hypothesis: Let 𝑘 ≥ 𝑎, and assume 𝑃(𝑘) holds
• Inductive Step: Then… by inductive hypothesis… thus 𝑃(𝑘 + 1) holds

• “MCS style”: (not wrong)

• Base Case: 𝑃(𝑎)
• Inductive Case/Step: Assume 𝑃(𝑛) holds for 𝑛 ≥ 𝑎. 

Then… (by inductive hypothesis…) … thus 𝑃(𝑛 + 1) holds

The "n=k" case



PI: Induction Step
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let k = a+1



𝑃(𝑘 − 1) → 𝑃 𝑘 or 𝑃(𝑘) → 𝑃 𝑘 + 1 ?
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• As you see in the PI, 
this is a moot debate without specifying the range of 𝑘

• Similar to the style discussion, there is no one correct approach

• Sanity check: check the statements can be used to prove
the first case not covered by the base cases



PI: Induction Step Again
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let k=b+1



Induction meets asymptotic notations
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• Recall the MergeSort recurrence relation:

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂 𝑛 , 𝑇 1 = 1

• We have seen in CM3 how to solve to 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)
by substitution/tree method/Master theorem.

• We can also prove that by guess-and-verify induction



10
• Given: 𝑇 𝑛 ≤ 2𝑇

𝑛

2
+ 𝑐𝑛, 𝑇 1 = 1

• Prove: 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

• Let 𝑐′ = 𝑐 + 1. Assume base 2 for all logs below.

• Base case(s): 𝑇 21 ≤ 2𝑇 1 + 𝑐21 = 2 𝑐 + 1 ≤ 2𝑐′ ∙ 21 log 21

• Inductive Hypothesis: Assume 𝑇 2𝑘 ≤ 𝑐′ ∙ 2𝑘 log 2𝑘 for 𝑘 ≥ 1

• Inductive Step: 𝑇 2𝑘+1 ≤ 2𝑇 2𝑘 + 𝑐2𝑘+1

≤ 2𝑐′ ∙ 2𝑘 log 2𝑘 + 𝑐′2𝑘+1

= 𝑐′ ∙ 2𝑘+1 log 2𝑘 + 𝑐′2𝑘+1

= 𝑐′ ∙ 2𝑘+1 log 2𝑘 + 1
= 𝑐′ ∙ 2𝑘+1(log 2𝑘+1)

≤ 𝑐′ ∙ 𝑛 log 𝑛 , ∀𝑛 ≥ 𝑛0 where 𝑛 is a power of 2  

Applying recurrence relation

We can write the recurrence this way because we can find such c so that

                                the O(n) term is always bounded from above by cn 

Applying inductive hypothesis

This step is because we are operating with base 2

Unlike the examples you saw earlier in which we prove a predicate for n=1, n=2, n=3..., 

here we are proving a predicate for n=2^1, n=2^2, n=2^3...

and therefore our inductive step goes from n=2^k to n=2^(k+1).

Actually, let c' = c could also work,

but we did c' = c+1 to explicitly show

that the two constants do not 

necessarily need to be equal;

c is the constant for the O(n) term 

in the rec relation, c' is the constant

for the claim that we're proving



I am a first-year biostatistics master’s student. My 

research interests include genetics and improving 

public health with data science. Outside of school, I 

like to travel, listen to music, and explore new places.

Class starts after this song

The Score – Revolution (2017)

requested by Elisa Ma (Head TA/TA-of-CM5)

I am excited to TA CS230 this semester, because it covers some of my favorite 

topics in all of math and CS. I am a math major, so I'm always happy to talk 

about obscure proof questions. Outside of math, I'm a film enthusiast, baseball 

fan, and amateur chef. I also share a birthday with the inventor of the Internet!

Hari Srinivasan 

(TA-of-CM5)



How do we go about CS230 in Spring 24
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Prof. X’s CS230

Prof. 
Z’s 

CS230

Prof. 
Y’s 
CS230

Core Modules (CMs, 8 in total):
“What everyone should learn”

Elective Modules (EMs):
“Useful for someone/some field”

Elective ModuleElective Module

Elective Module

Your own CS230

https://sites.duke.edu/compsci230sp2024/course-description/


What happens for an EM (more ad-hoc)
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Class 

Material

PL homework 

or Canvas quiz 
(autograded)

Assignment 
(manually graded)

No need to prepare

CMs already prepared you

Some sync (in-class), some async (video/reading), some hybrid

might be implemented in a recitation time slot
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Sync (see course calendar) Async (released in Canvas in early March)

Hybrid (3/8 for sync part)

E F

A D

B

C

4/12

4/19

https://sites.duke.edu/compsci230sp2024/


More EM support/resources
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• Some TAs specialized in each EM
• Post spring break, we will indicate on the consulting hours calendar

which TAs’ hours you can go to for help on which EM

• Ed is of course always open

• The last recitation (4/22) is an EM breakout day
• EM-specialized TAs will station the recitation classrooms 



Mid-semester Survey
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• Released after today’s class

• Due by end of February (2/29 11:59pm)

• Required as part of the Everything outside the modules module



PI: Weak vs. Strong Induction
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Misconception!

18

• The number one misconception in learning inductions 
is to think that weak = 1 base case, strong = 2+ base cases.

• That is NOT TRUE. 
Both weak and strong induction 
can have one or more base cases.



Example: 
weak induction 
1 base case
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Example: 
strong induction 
1 base case

20



Example: 
strong induction 
2 base cases

21



Example: 
weak induction 
2 base cases?

22



weak induction = strong induction
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• We can always simulate a strong induction by a weak induction 
using a change-of-predicate technique:

• If the given strong inductive step is
(𝑃 𝑎 ∧ 𝑃 𝑎 + 1 ∧ ⋯ ∧ 𝑃 𝑘 ) → 𝑃(𝑘 + 1)

• Define the predicate 𝑄 𝑘 ≔ (𝑃 𝑎 ∧ 𝑃 𝑎 + 1 ∧ ⋯ ∧ 𝑃 𝑘 )

• The proof is now a weak induction using the inductive step
𝑄 𝑘 → 𝑄(𝑘 + 1)



weak induction = strong induction

24

• We can always simulate a strong induction by a weak induction 
using a change-of-predicate technique.

• This means everything provable by strong induction can be 
proved by a weak induction (using the technique we just saw)

• In the other direction: everything provable by a weak induction 
can also be proved by strong induction 
(assuming more than needed, which is bad practice but valid)



Example: 
weak induction 
2 base cases?
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Example: 
strong induction 
2 base cases

26



If weak induction = strong induction,

27

• why do we teach/learn them as separate?

• Equally powerful, equally correct, 
NOT necessarily equally comprehensible

• Certain inductions more readable in weak/strong form



What can go wrong with inductions?
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• “Bogus induction”: a direct proof cosplaying as an induction

• Stating a strong hypothesis 
when the inductive step only needs the weak hypothesis

• Stating a weak hypothesis 
when the inductive step needs the strong hypothesis



“Bogus induction”

• Prove: 1 + 2 + ⋯ + 𝑛 =
𝑛 𝑛+1

2
, ∀𝑛 ∈ ℕ

• Base case: 1 =
1(1+1)

2

• Inductive hypothesis: let 𝑘 ≥ 1 and assume 1 + 2 + ⋯ + 𝑘 =
𝑘 𝑘+1

2
• Inductive step: 1 + 2 + ⋯ + 𝑘 + 𝑘 + 1

=
1 + 𝑘 + 1 + 2 + 𝑘 + ⋯ 𝑘 + 1 + 1

2
=

(𝑘 + 2)(𝑘 + 1)

2

29



Stating a strong hypothesis when the inductive 
step only needs the weak hypothesis

• This is bad practice (assuming more than needed)

• Not technically incorrect; still a valid proof (worth an S)
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Stating a weak hypothesis when the inductive step 
needs the strong hypothesis

• This is incorrect; the inductive step doesn’t go through

• Not a valid proof, will get N

31



Induction vs. other proof techniques
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• Inductions are NOT mutually exclusive with other proof 
techniques such as by cases, by contradiction, by construction…

• The inductive step of an induction proof is itself a proof  
• Prove the inductive step by cases 

• Prove the inductive step by contradiction

• …



Peer discussion: Strengthening IH

33



Failed attempt

• Base case: 1 = 12.

• Inductive hypothesis: 
let 𝑘 ≥ 1 and assume 1 + 3 + ⋯ + 𝑘 = 𝑚2 for some 𝑚 ∈ ℕ.

• Inductive step: for 𝑛 = 𝑘 + 2 (!),
1 + 3 + ⋯ + 𝑘 + 𝑘 + 2 = 𝑚2 + 𝑘 + 2 … ?
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Successful attempt

• Base case: 1 = 12.

• Strengthened Inductive hypothesis: 

let 𝑘 ≥ 1 and assume 1 + 3 + ⋯ + 𝑘 = (
𝑘+1

2
)2.

• Inductive step: for 𝑛 = 𝑘 + 2,

1 + 3 + ⋯ + 𝑘 + 𝑘 + 2 = (
𝑘+1

2
)2+𝑘 + 2 … (some algebra) … = (

𝑘+3

2
)2

35



More general inductions?
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• Both weak/strong induction (now we know they’re “equal”)
deal with statements of the form 𝑃(𝑛) for 𝑛 ∈ ℕ (or some subset of ℕ)

• What about:
• 𝑃(𝑇) for all trees 𝑇?

• 𝑃(𝑆) for all binary strings 𝑆?

• We can “induct on” more (discrete) structures than just numbers



Recursively defined sets

37

• Now let’s go back to a set theory context 

• Some sets can be defined recursively

• Example 1. The set of even numbers, 𝔼, can be defined as:

• Base Case: 0 ∈ 𝔼

• Constructor Case: If 𝑥 ∈ 𝔼, then 𝑥 − 2 ∈ 𝔼 and 𝑥 + 2 ∈ 𝔼.



Recursively defined sets

38

• Now let’s go back to a set theory context 

• Some sets can be defined recursively

• Example 1. The set of even numbers, 𝔼, can be defined as:

• Base Case: 2 ∈ 𝔼

• Constructor Case: If 𝑥 ∈ 𝔼, then 𝑥 − 2 ∈ 𝔼 and 𝑥 + 2 ∈ 𝔼.



Recursively defined sets

39

• One more example on sets

• Example 2. The set of (nonnegative) powers of 2, 𝑃, can be defined as:

• Base Case: 1 ∈ 𝑃

• Constructor Case: If 𝑥 ∈ 𝑃, then 2𝑥 ∈ 𝑃



Recursively defined structures

40

• Same idea, but the set now contains objects, not just numbers

• Example 3. The set of (undirected) binary trees, 𝒯, can be defined as:

• Base Case: 𝑇 = (∅, ∅) ∈ 𝒯 (the “empty tree”)

• Constructor Case: If 𝑇1, 𝑇2 ∈ 𝒯, then                   ∈ 𝒯

𝑇1 𝑇2



Recursively defined structures

41

• Example 4. The set of (undirected) graphs, 𝒢, can be defined as:

• Base Case: 𝐺 = (∅, ∅) ∈ 𝒢 (the “empty graph”)

• Constructor Case: If 𝐺 = (𝑉, 𝐸) ∈ 𝒢, then:
• 𝐺′ = (𝑉 ∪ 𝑣 , 𝐸) ∈ 𝒢 (“add a vertex”)

• 𝐺′ = (𝑉, 𝐸 ∪ 𝑒 ) ∈ 𝒢 where 𝑒 = 𝑢, 𝑣 , 𝑢, 𝑣 ∈ 𝑉 (“add an edge”)



Recursively defined structures

42

• Example 5. The set of balanced parentheses, ℬ, can be defined as:

• Base Case: 𝜆 ∈ ℬ (the “empty string”)

• Constructor Case: If strings 𝑠1, 𝑠2 ∈ ℬ, then:
• (𝑠1) ∈ ℬ

• 𝑠1𝑠2 ∈ ℬ
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