
I'm a senior from Asheville, North Carolina going into 

my fifth semester as a UTA for CS230, and I'm looking 

forward to graduating at the end of the semester! My 

hobbies include cooking and playing chess, and I love 

playing basketball and watching sports of all kinds, 

especially basketball and hockey.

Class starts after this song

Electric Light Orchestra – Livin’ Thing (1976)

requested by Erik Dahlberg (TA-of-CM4)



Logistic Bulletin Board

• Exam 1 official reference sheet released

• Practice exam 1 goes out today after class
• Attempt it yourself (don’t forget about the ref sheet)

• Your TAs will go over it in recitation on 2/12 (M)

• Also on 2/12 (M) we will release sample grading results
(sample E, S, N answers to each question)
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Logistic Bulletin Board

1st round due Feedback released 2nd round due Feedback released

CM1 1/28 2/2 2/7 (tonight) By 2/12 (expected)

CM2 2/4 2/7 (sometime today) 2/11 (Hopefully) 2/13

CM3 2/11 Late night 2/13 2/18 TBD
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What happens for a written assignment
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Submit 
your work

Teaching team 
gives feedback

Revise work based 
on feedback

At least 2 full cycles 

promised

At least 1 full cycle before 

the relevant exam

Human-graded



CS230 Spring 2024
Module 04: Sets, Functions, and Relations



Why sets/functions/relations?
• It might sound hyperbole but sets are the foundation of math

• Things we take for granted:
• ℕ, ℚ, ℝ, ℤ, 2D space, Euclidean space… how to “define”?

• Set theory also:
• provides a way for us to “handle” infinity (it is counterintuitive)

• provides basic language for studying more “immediately useful” things 
such as counting, probability, and graphs

• these “immediately useful” things are then useful for us computer scientists 
because we strive for solving real-world problems
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You understand sets/functions/relations
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Set and logic operators

8

This is not coincidence!

You will establish some of 
these connections in the 
recitation.



PI: Empty Set
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Definition Chaos: Functions
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• Relations from domain 𝐴 to codomain 𝐵 are defined as 
subsets of 𝐴 × 𝐵

• There is no inconsistency/ambiguity about this fact; everyone agrees

• Sometimes 𝐴 = 𝐵 but order still matters

• A relation is functional if no element in the domain is related to 
multiple elements in the codomain

• Functions satisfy this, so functions are functional relations



Definition Chaos: Functions
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• MCS calls all functional relations functions
• So the empty relation ∅ ⊆ 𝐴 × 𝐵 is a function per their terms

• Most of others call all functional total relations functions 
• Total relations map all elements in the domain to something

• So the empty relation ∅ ⊆ 𝐴 × 𝐵 is NOT a function per this definition

• In programming terms: functions cannot/shouldn’t “refuse to return”

• We will use this definition



Definition Chaos: Functions with properties
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• Function + injective = injection

• Function + surjective = surjection

• Function + bijective = bijection



Definition Chaos: Functions with properties
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• functional + total + injective = injection

• functional + total + surjective = surjection

• functional + total + bijective = bijection



PI: Relation Properties 
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some student has completed none; some completed multiple

because it's already not a function

many students in each section



Relations/functions on infinite sets
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• This week (2/7 and 2/9) is mostly about finite sets
and relations/functions defined on finite sets

• But ℕ, ℚ, ℝ, ℤ are familiar enough that we can discuss 
relations/functions defined on them



Relations/functions on infinite sets
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• Relations from domain 𝐴 to codomain 𝐵 are defined as subsets of 𝐴 × 𝐵

• Functional relations map no element in 𝐴 to multiple elements in 𝐵

• Total relations map all elements in 𝐴 to some element(s) in 𝐵

• Injective relations map different elements in 𝐴 to different elements in 𝐵

• Surjective relations map some element(s) in 𝐴 to each element in 𝐵

• Bijective relations are just injective and surjective relations

• Nothing here says 𝐴, 𝐵 have to be finite 



PI: Relation Properties
Again 
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Proving function/relation properties
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• Past CS230 students have this common question: 
“I can tell this function is injective, but how do we prove it?”

• Notice that each property is defined as a logical statement

• Proving that statement is true proves the property



PI: How do we prove it?
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Contrapositives of each other

Contrapositives of each other



𝑅 ⊆ 𝐴 × 𝐴
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 …

𝑎 X X X

𝑏 X

𝑐 X

𝑑 X

𝑒 X X

𝑓 X X

…



Reflexive
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 …

𝑎 X X

𝑏 X X X X

𝑐 X

𝑑 X X

𝑒 X X

𝑓 X X X

…

…



Irreflexive
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 …

𝑎 X

𝑏 X X X

𝑐

𝑑 X X X

𝑒 X X X

𝑓 X X

…

…



Symmetric
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 …

𝑎 X X X

𝑏 X

𝑐 X X X

𝑑 X X

𝑒 X X X

𝑓 X X

…

…



Anti-Symmetric
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 …

𝑎 X X

𝑏

𝑐 X X

𝑑 X

𝑒 X X

𝑓 X

…

…



Asymmetric = Anti-Symmetric + Irreflexive
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 …

𝑎 X X

𝑏

𝑐 X

𝑑

𝑒 X X

𝑓 X

…

…



Transitive
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 X X

𝑏 X

𝑐

𝑑

𝑒

𝑓

(𝑎𝑅𝑏)⋀(𝑏𝑅𝑐) → (𝑎𝑅𝑐)



Transitive
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 X X

𝑏 X

𝑐

𝑑

𝑒 X X

𝑓 X X

(𝑎𝑅𝑏)⋀(𝑏𝑅𝑐) → (𝑎𝑅𝑐)

(𝑒𝑅𝑓)⋀(𝑓𝑅𝑒) → (𝑒𝑅𝑒)⋀(𝑓𝑅𝑓)



Transitive
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 X X

𝑏 X

𝑐 X

𝑑 X X

𝑒 X X

𝑓 X X

(𝑎𝑅𝑏)⋀(𝑏𝑅𝑐) → (𝑎𝑅𝑐)

(𝑒𝑅𝑓)⋀(𝑓𝑅𝑒) → (𝑒𝑅𝑒)⋀(𝑓𝑅𝑓)

(𝑑𝑅𝑐)⋀(𝑐𝑅𝑏) → (𝑑𝑅𝑏)



Transitive
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 X X

𝑏 X X

𝑐 X X

𝑑 X X

𝑒 X X

𝑓 X X

(𝑎𝑅𝑏)⋀(𝑏𝑅𝑐) → (𝑎𝑅𝑐)

(𝑒𝑅𝑓)⋀(𝑓𝑅𝑒) → (𝑒𝑅𝑒)⋀(𝑓𝑅𝑓)

(𝑑𝑅𝑐)⋀(𝑐𝑅𝑏) → (𝑑𝑅𝑏)

(𝑏𝑅𝑐)⋀(𝑐𝑅𝑏) → (𝑏𝑅𝑏)
(𝑐𝑅𝑏)⋀(𝑏𝑅𝑐) → (𝑐𝑅𝑐)



Transitive + Symmetric
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 X X

𝑏 X X X X

𝑐 X X X X

𝑑 X X

𝑒 X X

𝑓 X X



Transitive + Symmetric
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 X X X X

𝑏 X X X X

𝑐 X X X X

𝑑 X X X X

𝑒 X X

𝑓 X X



Transitive + Symmetric + Reflexive
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 X X X X

𝑏 X X X X

𝑐 X X X X

𝑑 X X X X

𝑒 X X

𝑓 X X



Transitive + Symmetric + Reflexive = Equivalence
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 X X X X

𝑏 X X X X

𝑐 X X X X

𝑑 X X X X

𝑒 X X

𝑓 X X



PI: Equivalences and Partitions
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑎 X X X X

𝑏 X X X X

𝑐 X X X X

𝑑 X X X X

𝑒 X X

𝑓 X X



• A function 𝑓 has an inverse function 𝑔 = 𝑓−1 only if it’s a bijection

• But the inverse of a relation always exists:
• Relation 𝑅 ⊆ 𝐴 × 𝐵

• Inverse 𝑅−1 = {(𝑏, 𝑎)|(𝑎, 𝑏) ∈ 𝑅} ⊆

Inverses of functions and relations
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𝐵 × 𝐴



Inverse relations
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𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

𝑎 X X X

𝑏 X X

𝑐 X X

𝑎 𝑏 𝑐

𝑎 X

𝑏 X

𝑐 X

𝑑 X X

𝑒

𝑓 X

𝑔 X



Class starts after this song

Noah Kahan – Stick Season (2022)

requested by Divyansh Jain (TA-of-CM4)

Sophomore from New Delhi, India studying CS and 

Math. Likes to play chess, watch crime thrillers and 

hang out with friends. Fun fact: Went to boarding 

school in Switzerland!



Logistic Bulletin Board
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• More hints in CM3 added to the assignment PDF on Canvas

• Read the Canvas announcement/emails on the exam eve for:
• What to do if you still have N’s in your CM1/CM2 assignments

• What to do if you want a regrade on CM3 Round 1



Post-exam (but pre-exam-grading) reflections
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• Exams and assignments are completely different settings
• In assignments, we are harshly/rigorously pushing you to keep 

improving your work, even if that increases our own workload (by a lot)

• In exams, you get one timed chance to show your learning and there’s 
not a chance for you to revise your own work on the same questions

• Therefore we don’t hold you to the same standard in exams



PI: Inverses
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R=AxA

(full relation)



Function 
compositions

41

David Tan, “Coding habits 
for data scientists”, 2019

https://www.thoughtworks.com/en-us/insights/blog/coding-habits-data-scientists
https://www.thoughtworks.com/en-us/insights/blog/coding-habits-data-scientists


42

PI: Composition Properties

g applies first!

f applies first! this composite function maps all real number to 0



Definition Chaos: Partial Orders
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• AIDMA defines partial orders as reflexive, anti-symmetric, and transitive

• MCS defines two concepts:
• Weak partial orders are reflexive, anti-symmetric, and transitive

• Strict partial orders are irreflexive, anti-symmetric, and transitive

• Under these definitions, weak and strict are disjoint (for a nonempty domain)

• Other sources (including some past instructors here):

• (Weak) partial orders are just anti-symmetric, and transitive

• Strong/strict partial orders are irreflexive, anti-symmetric, and transitive

• Under these definitions, strict ⊆ weak



Definition Chaos: Partial Orders

44

• Like whether 0 ⊆ ℕ or not, these definitions all have their pros and cons

• Bottom line: 
• any kind of partial orders are anti-symmetric and transitive

• Strict partial orders are also irreflexive

• In this class, when regarding (weak) partial orders,
we will always explicitly state whether the relation in question 
needs to be reflexive or not



Infinity 
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aka where intuitions go wrong

The rest of slides (from this point and on) will not be on any 
exam/assignment, but one part will reappear in recitations for good practice



Recap: cardinality rules for finite sets
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Let 𝐴, 𝐵 be two finite sets. Then: (AIDMA Theorem 4.92 restated)

• 𝐴 ≤ 𝐵 ⇔ there exists an injection from 𝐴 to 𝐵

• 𝐴 ≥ 𝐵 ⇔ there exists a surjection from 𝐴 to 𝐵

• 𝐴 = 𝐵 ⇔ there exists a bijection from 𝐴 to 𝐵

• Actually proving these theorems need either induction or counting arguments
• Although they are (hopefully) intuitive



Cardinalities of infinite sets?

47

• It is okay to really say ℕ = ℚ = ℝ = ℤ = ∞?

• What does that mean? 
• Does that mean there are as many natural numbers as rational numbers? 

• But isn’t ℕ ⊂ ℚ?

• How can two sets have the same number of elements, 
yet one strictly contain the other?



Warmup: ℕ and ℤ+
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• They are both infinite sets

• ℤ+ ⊆ ℕ (let’s use the definition that 0 ∈ ℕ)

• Don’t know how to reason about their cardinalities…

• But recall that function properties (injective, surjective, bijective) 
do not rely on the domain/codomain to be finite!



Warmup: ℕ and ℤ+
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• There is a bijection between ℕ and ℤ+. Can you find it?

• 𝑓: ℕ→ℤ+ where 𝑓 𝑥 = 𝑥 + 1

• 𝑓 0 = 1, 𝑓 1 = 2, 𝑓 2 = 3, …



Warmup: ℕ and 2ℕ
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• There is a bijection between ℕ and 2ℕ = {2𝑛|𝑛 ∈ ℕ}. 
Can you find it?

• 𝑓: ℕ→2ℕ where 𝑓 𝑥 = 2𝑥

• 𝑓 0 = 0, 𝑓 1 = 2, 𝑓 2 = 4, …



Warmup: ℕ and ℤ
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• There is a bijection between ℕ and ℤ. Can you find it?

• 𝑓: ℕ→ℤ where 𝑓 𝑥 = ቐ

𝑥

2
, 𝑥 even

−
𝑥+1

2
, 𝑥 odd

• 𝑓 0 = 0, 𝑓 1 = −1, 𝑓 2 = 1, 𝑓 3 = −2, 𝑓 4 = 2, …



Countable and countably infinite
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• An infinite set 𝐴 is countably infinite if there exists a bijection
between ℕ and 𝐴.

• ℤ+, ℕ, 2ℕ are all countably infinite as we just showed

• A set 𝐴 is countable if there exists a surjection from ℕ to 𝐴.
• {1} is countable because we can define 𝑓: ℕ → 1 where 𝑓 𝑥 = 1
• {𝑑, 𝜇, 𝑘, 𝜀} is countable because we can define

𝑓: ℕ → 𝑑, 𝜇, 𝑘, 𝜀 where 𝑓 1 = 𝑑, 𝑓 2 = 𝜇, 𝑓 3 = 𝑘, 𝑓 𝑥 = 𝜀 ∀ 𝑥 > 3



ℚ is countable
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• We will show ℚ+ is countable today

• You will extend it to ℚ in the recitations



ℚ+ is countable [dovetailing]
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• Define the surjection from ℕ to ℚ+:

1 2 3 4 5 …

1 1/1 1/2 1/3 1/4 1/5

2 2/1 2/2 2/3 2/4 2/5

3 3/1 3/2 3/3 3/4 3/5

4 4/1 4/2 4/3 4/4 4/5

5 5/1 5/2 5/3 5/4 5/5

…

f(0) = 1/1

f(1) = 1/2

f(2) = 2/1

f(3) = 3/1

...



Cartesian product of countable sets
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• (Theorem) the Cartesian product of two countable sets is countable.

• The concept is no different than the dovetailing we just did:
• “List” both sets along the rows/columns

• Dovetail through the table



Union of countable sets
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• (Theorem) the union of countably many countable sets is countable.
(wait what?)

• A “proof” is out of reach, needs tools that we haven’t (and won’t) cover

• The “concept” is no different than the dovetailing we just did:
• “List” every set as a row

• Dovetail through the rows

• Need every row to be countable (otherwise “can’t list it as a row”)

• Need countable number of rows (otherwise “can’t dovetail”)



Okay, so everything is countable?
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• Theorem: ℝ is NOT countable.

• What does this mean?
• There exists no surjection from ℕ to ℝ.

• How do we prove “there exists no…”?



ℝ is uncountable
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• There exist some simple bijections between [0,1] and ℝ

• For example, tan((𝑥 −
1

2
) × 𝜋)

• We will prove there is no surjection from ℕ to [0,1].

• Any such surjection composed with tan((𝑥 −
1

2
) × 𝜋)

would be a surjection from ℕ to ℝ



ℝ is uncountable (in binary)
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• Assume there is a surjection from ℕ to [0,1].

𝒙 𝒇(𝒙) in binary

0 .0101001010 …

1 .1111000001 …

2 .0101011111 …

3 .0100000000 …

4 .1110001111 …

…

𝒙 𝒇(𝒙) in binary

0 .0101001010 …

1 .1111000001 …

2 .0101011111 …

3 .0100000000 …

4 .1110001111 …

…

The number .10111 …
which we obtain by

swapping every bit along

the diagonal is not in this table

(More detailed explanations

can be found in MCS Ch.8)



ℝ is uncountable (in base 10 digits)

60

• Assume there is a surjection from ℕ to [0,1].

𝒙 𝒇(𝒙) in binary

0 .0101001010 …

1 .1111000001 …

2 .0101011111 …

3 .0100000000 …

4 .1110001111 …

…

𝒙 𝒇(𝒙) in binary

0 .324613528 …

1 .576482261 …

2 .013899041 …

3 .000900220 …

4 .987654321 …

…

The number .48406 …
which we obtain by

replacing 𝑥 by 𝑥 + 1  mod 10 

for every bit along the 

diagonal is not in this table

(More detailed explanations

can be found in MCS Ch.8)



𝑃(ℕ) is uncountable

61

• Theorem [MCS8.1.12]: 
for any set 𝐴, there exist no surjection from 𝐴 to P(𝐴).

• 𝐴 doesn’t need to be infinite!

• But for finite 𝐴 this is obvious (cardinality laws)

• Corollary: 𝑃(ℕ) is uncountable.

• Corollary: the set of all binary strings is uncountable.
• This is since we can use binary strings to encode 𝑃(ℕ)

• Corollary: ℝ is uncountable again.
• This is since we can use binary strings to encode [0,1].



Putting this altogether

• finite

• countably infinite = countable + infinite
• “lowest level of infinity”: ℕ, ℚ, ℤ, their unions, Cartesian products, etc.

• uncountably infinite 
• “not the lowest level of infinity”: ℝ, 𝑃(ℕ), etc.

• there are many levels! Think 𝑃 ℝ , 𝑃(𝑃(ℝ)) …

62
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