
Amateur dancer. Jellyfish lover. Night owl.

Class starts after this song

Kings of Convenience – Homesick (2004)

requested by Carrie Hang (TA-of-CM7)

CS230 Spring 2024
EM A/D: Graph Applications

Ice Skating

3

Wall

Obstacles

You

(Start)

• You’re a lousy ice skater
• Can only move NSEW

• Cannot turn while in motion

• Cannot decelerate while moving

• Only stops when hitting something

• Once stopped, can turn

Ice Skating

4

Wall

Obstacles

Ice Skating

5

Wall

Obstacles

Ice Skating

6

• Which star is reachable,
and how?

Ice Skating

7

• What if some obstacles can
move?

• If you hit some movable obstacles,
you “push them forward”
until you both hit a wall

Search Problem and State Space Graphs

8

• An abstraction of the “world”:
• A state space

• A successor function

• A start state

• A goal test

• How many successors
for each state if:

• Obstacles can’t move?

• Obstacles can move?

How large is the graph?

9

• Obstacles can’t move:
• 20 states (25 grids – 5 occupied)

• Obstacles can move (need CM7):

• 25
5

× 20 ≈ 106 for the 5x5 grid

• ≈ 1013 for the 10x8 grid

Search Tree

10• Each vertex in the tree
is both a state and a
“plan of movement”

• Usually contains
repeated states

• Is usually infinite

Tree Search

11

• Depth-first Search (DFS)

• Breadth-first Search (BFS)

• Iterative-Deepening (IDS)

• Uniform-Cost Search (UCS)

Depth-first Search (DFS)

12

from Berkeley CS188 AI class

• Not guaranteed to stop (can cycle
between repeated states)

• Not guaranteed to
find the “optimal” solution

• What is “optimal”? Need an explicit
criteria, e.g., # of steps/actions

Topological Sorting a DAG using DFS

13

1. Add a “pseudo-vertex” 𝑢 and edges from 𝑢 to all real vertices
• This guarantees one DFS can traverse the whole graph

2. Start a DFS from 𝑢

3. Append a vertex 𝑣 to the order only after
all children of 𝑣 are already in the order

4. Remove 𝑢, then reverse the order of vertices

Topological Sorting a DAG using DFS

14

• Visit the smallest child first

• We don’t need to add the fake vertex 𝑢
here because vertex 1 has that property

• Global order:

• Topological order:

8,12,4,6,10,2,9,3,5,7,11,1

1,11,7,5,3,9,2,10,6,4,12,8

Depth-first Search (DFS)

15

from Berkeley CS188 AI class

• Not guaranteed to stop

• Not guaranteed to
find the “optimal” solution

Breadth-first Search (BFS)

16

from Berkeley CS188 AI class

• Finds a solution (if exists)
in finite steps

• Finds the “optimal” solution if each
step costs the same

Iterative-Deepening (IDS)

17

from Berkeley CS188 AI class

• Combines the best of two worlds
• BFS’s time efficiency/

performance guarantee

• DFS’s memory efficiency

Uniform Cost Search (UCS)

18

from Berkeley CS188 AI class

• Maintain a priority queue
capturing the (cumulated)
cost of each node

• Expand the lowest one in
the frontier at each step

• Extends optimality to
weighted-cost scenarios

Tree Search

19

• They really just differ in the frontier strategies

• They do the same thing, regardless of the goal

How to leverage more problem-specific

knowledge?

• Read about informed searches/A* algorithm

• Take CS370

20

• State space graph and search trees are nice… for discrete problems

• What if the problem was continuous?

21

Motion
planning

• Let’s fly a drone around
campus

• Need not follow walkpaths

• But can’t fly over buildings

22

Approach 1:
Grid

• “Discretize the world”

• How granularized?

• What are the possible moving
patterns? Just NSEW?

• How to deal with partially-
occupied grids?

23

Approach 2:
Visibility Graph

• Focuses on obstacles
• (For now) treat the drone as a

single point of mass

• Abstract all obstacles as
convex polygons

• Add vertices to all corners

• Create edges between all
unobstructed pairs of vertices

• Run shortest path algorithms
on resulting graph

24

Approach 2:
Visibility Graph

• Drone is not a point…

• No problem! We just leave
some padding around
obstacles

• However: hard to compute
when have many obstacles
with complicated shapes

25

• Sample some location
• Determine the nearest

known location closest to
the new one

• If unobstructed, keep;
otherwise discard

Approach 3:
Random Sampling

26

• Hybrid ideas of these…

• Completely different
ones…

• The first step is usually
come up with a good
model/abstraction of the
real-world problem

Many other
approaches exist

	Slide 1
	Slide 2
	Slide 3: Ice Skating
	Slide 4: Ice Skating
	Slide 5: Ice Skating
	Slide 6: Ice Skating
	Slide 7: Ice Skating
	Slide 8: Search Problem and State Space Graphs
	Slide 9: How large is the graph?
	Slide 10: Search Tree
	Slide 11: Tree Search
	Slide 12: Depth-first Search (DFS)
	Slide 13: Topological Sorting a DAG using DFS
	Slide 14: Topological Sorting a DAG using DFS
	Slide 15: Depth-first Search (DFS)
	Slide 16: Breadth-first Search (BFS)
	Slide 17: Iterative-Deepening (IDS)
	Slide 18: Uniform Cost Search (UCS)
	Slide 19: Tree Search
	Slide 20
	Slide 21: Motion planning
	Slide 22: Approach 1: Grid
	Slide 23: Approach 2: Visibility Graph
	Slide 24: Approach 2: Visibility Graph
	Slide 25: Approach 3: Random Sampling
	Slide 26: Many other approaches exist

