
RSA
Recall from Cryptography Basics (https://canvas.duke.edu/courses/24695/pages/cryptography-
basics) that asymmetric crypto systems need a reasonably hard problem at the core of preventing
easy computation of the private key given the public key . In RSA algorithm, the core problem
is just prime factorization.

In a nutshell, the RSA algorithm operates as follows:

Find two (large) primes and . Compute their product .
Find a positive number that is coprime with . In other words,

.
Find the multiplicative inverse of . Let's call this number , so that

.
We should use the Euclidean Algorithm to find (because is very much not a
prime).

The public key can be represented by the pair . More specifically, assume our plaintext is
encoded as a number . (Think of sending small chunks of information at a time.) Then the
encryption function is .
The private key can be represented by the number . Given any ciphertext , we can decipher it
back to the plaintext .

That's it. Now let's verify that and are actually inverses of each other. In other words, we verify
 for all possible plaintext .

Proof. Since , we can write it as for
some integer . Then we have

Now, recall Fermat's Little Theorem tells us . Leveraging this fact,
we have:

https://canvas.duke.edu/courses/24695/pages/cryptography-basics
https://canvas.duke.edu/courses/24695/pages/cryptography-basics

The process above tells us , which implies .

Now, let us realize that the entire process can be applied on instead of . Try replacing all in the
above by and all by . This gives us .

But and are both primes. If and , and both and are primes, we
can conclude .

Finally, notice . So actually means . In other words, we
have

Why is RSA (conceptually) secure? Note that only is public information. To decrypt, one
needs to know , the multiplicative inverse of . Given and
this is easily computable by Euclidean Algorithm... except malicious parties do not know

. We have only announced . Assuming prime factorization is reasonably
hard, no one can figure out what and are in reasonable time, so no one knows what

 is.

Remark.

What is described here is the original concept of RSA. It is not the actual RSA used in real life
now.
We haven't addressed many issues:

How large should and be? (Nowadays, they should be about the size of binary
digits.)
What is a good ? (Choosing a too small will make the whole scheme prone to some
deliberate attacks.)

Is the encryption/decryption actually fast enough? (Not really. In practice, asymmetric systems
are used to communicate the keys of symmetric systems.)
Since the public key is, well, public, anyone can send the receiver some encrypted
information. How do we prevent fake/malicious information being sent? (Read about digital

