RSA

basics) that asymmetric crypto systems need a reasonably hard problem at the core of preventing
easy computation of the private key f_1 given the public key f. In RSA algorithm, the core problem
is just prime factorization.

In a nutshell, the RSA algorithm operates as follows:

e Find two (large) primes p and q. Compute their product n = pq.
« Find a positive number r that is coprime with (p — 1)(g — 1). In other words,
GCD(r,(p—1)(g—1)) =1.
« Find the multiplicative inverse of » mod (p — 1)(g — 1). Let's call this number s, so that
rs =1 (mod (p —1)(¢ — 1)).
o We should use the Euclidean Algorithm to find s (because (p — 1)(g — 1) is very much not a
prime).

+ The public key can be represented by the pair (7', n) More specifically, assume our plaintext is
encoded as a number £ < n. (Think of sending small chunks of information at a time.) Then the
encryption function is y = f(x) = " mod n.

e The private key can be represented by the number s. Given any ciphertext y, we can decipher it
back to the plaintext f~!(y) = ¥* mod n.

That's it. Now let's verify that f and f‘l are actually inverses of each other. In other words, we verify
f! (f(w)) = g for all possible plaintext f.

Proof. Since rs =1 (mod (p — 1)(q — 1)), we can write itas s = k(p — 1)(¢ — 1) + 1 for
some integer k. Then we have

2™ — wk(p—l)(q—1)+1 //
= g x g®Dka-1) // factoring out one r and rearr
= X (a:(p_l))k(q_l) // treating z® V)

= X (x(p—l)) X (x(p—l)) W oeeo X (w(p—l))

Now, recall Fermat's Little Theorem tells us x £®~Y = 2P = ¢ (mod p). Leveraging this fact,
we have:

https://canvas.duke.edu/courses/24695/pages/cryptography-basics
https://canvas.duke.edu/courses/24695/pages/cryptography-basics

" =z X (m(p 1)) X (m(p_l)) X e X (m(p_l))
=z x(w(p_l)) X o X(w(p_l)) (mod p) // the first two terms
=z XX (m(p_l)) (mod p) /.
=z (mod p)
The process above tells us ™ = x (mod p), which implies p | (™ — z).

Now, let us realize that the entire process can be applied on q instead of p. Try replacing all p in the
above by g and all ¢ by p. This gives us q | (2™ —).

But p and q are both primes. If p | (2™ —) and q | (" — z), and both p and g are primes, we
can conclude pq | (z™ —).

Finally, notice n = pgq. So pq | (™ —) actually means ™ = z (mod n). In other words, we
have

! (f(w)) = f! (CET mod n) // encryption
= (2" mod n)® mod n // decryption
=z"* mod n // mod rules
=z // because z'° =z (mod n)

Why is RSA (conceptually) secure? Note that only ('r', n) is public information. To decrypt, one
needs to know 8, the multiplicative inverse of 7 mod (p — 1)(¢ — 1). Givenrand (p — 1)(¢ — 1)
this is easily computable by Euclidean Algorithm... except malicious parties do not know

(p — 1)(g — 1). We have only announced n = pq. Assuming prime factorization is reasonably
hard, no one can figure out what p and q are in reasonable time, so no one knows what

(P—-1(g-1)is.

Remark.

e What is described here is the original concept of RSA. It is not the actual RSA used in real life
now.
+ We haven't addressed many issues:
o How large should p and q be? (Nowadays, they should be about the size of 2048 binary
digits.)
o What is a good 7? (Choosing a too small 7 will make the whole scheme prone to some
deliberate attacks.)

o Is the encryption/decryption actually fast enough? (Not really. In practice, asymmetric systems
are used to communicate the keys of symmetric systems.)

o Since the public key is, well, public, anyone can send the receiver some encrypted
information. How do we prevent fake/malicious information being sent? (Read about digital

