RSA

Recall from <u>Cryptography Basics</u> (https://canvas.duke.edu/courses/24695/pages/cryptography-basics) that asymmetric crypto systems need a reasonably hard problem at the core of preventing easy computation of the private key f^{-1} given the public key f. In RSA algorithm, the core problem is just *prime factorization*.

In a nutshell, the RSA algorithm operates as follows:

- Find two (large) **primes** p and q. Compute their **product** n=pq.
- ullet Find a positive number r that is coprime with (p-1)(q-1). In other words, $\mathrm{GCD}ig(r,(p-1)(q-1)ig)=1$.
- Find the **multiplicative inverse** of $r \mod (p-1)(q-1)$. Let's call this number s, so that $rs \equiv 1 \pmod {(p-1)(q-1)}$.
 - \circ We should use the Euclidean Algorithm to find s (because (p-1)(q-1) is very much not a prime).
- The **public key** can be represented by the pair (r, n). More specifically, assume our plaintext is encoded as a number x < n. (Think of sending small chunks of information at a time.) Then the encryption function is $y = f(x) = x^r \mod n$.
- The **private key** can be represented by the number s. Given any ciphertext y, we can decipher it back to the plaintext $f^{-1}(y) = y^s \mod n$.

That's it. Now let's verify that f and f^{-1} are actually inverses of each other. In other words, we verify $f^{-1}(f(x)) = x$ for all possible plaintext f.

Proof. Since $rs \equiv 1 \pmod {(p-1)(q-1)}$, we can write it as rs = k(p-1)(q-1)+1 for some integer k. Then we have

$$x^{rs} = x^{k(p-1)(q-1)+1}$$
 // $= x imes x^{(p-1)k(q-1)}$ // factoring out one x and rearr $= x imes (x^{(p-1)})^{k(q-1)}$ // treating $x^{(p-1)}$ $= x imes (x^{(p-1)}) imes (x^{(p-1)})$

Now, recall Fermat's Little Theorem tells us $x \times x^{(p-1)} = x^p \equiv x \pmod p$. Leveraging this fact, we have:

$$x^{rs} = x imes (x^{(p-1)}) imes (x^{(p-1)}) imes \cdots imes (x^{(p-1)})$$
 $\equiv x imes (x^{(p-1)}) imes \cdots imes (x^{(p-1)}) \pmod p$ // the first two terms $x imes x imes \cdots imes (x^{(p-1)}) \pmod p$ $\therefore x imes x \pmod p$ $\therefore x imes x \pmod p$

The process above tells us $x^{rs} \equiv x \pmod p$, which implies $p \mid (x^{rs} - x)$.

Now, let us realize that the entire process can be applied on q instead of p. Try replacing all p in the above by q and all q by p. This gives us $q \mid (x^{rs} - x)$.

But p and q are both primes. If $p \mid (x^{rs} - x)$ and $q \mid (x^{rs} - x)$, and both p and q are primes, we can conclude $pq \mid (x^{rs} - x)$.

Finally, notice n=pq. So $pq\mid (x^{rs}-x)$ actually means $x^{rs}\equiv x\pmod n$. In other words, we have

Why is RSA (conceptually) secure? Note that only (r,n) is public information. To decrypt, one needs to know s, the multiplicative inverse of $r \mod (p-1)(q-1)$. Given r and (p-1)(q-1) this is easily computable by Euclidean Algorithm... except malicious parties do not know (p-1)(q-1). We have only announced n=pq. Assuming prime factorization is reasonably hard, no one can figure out what p and q are in reasonable time, so no one knows what (p-1)(q-1) is.

Remark.

- What is described here is the original concept of RSA. It is not the actual RSA used in real life now.
- · We haven't addressed many issues:
 - \circ How large should $\,p$ and $\,q$ be? (Nowadays, they should be about the size of 2048 binary digits.)
 - \circ What is a good r? (Choosing a too small r will make the whole scheme prone to some deliberate attacks.)

- Is the encryption/decryption actually fast enough? (Not really. In practice, asymmetric systems are used to communicate the keys of symmetric systems.)
- Since the public key is, well, public, anyone can send the receiver some encrypted information. How do we prevent fake/malicious information being sent? (Read about digital