Formal Languages

This page introduces the key ingredients used to define formal languages.

1. An alphabet Σ. Σ is a finite set that contains all relevant symbols.
 - In the context of English strings, $\Sigma = \{a, b, c, \ldots, z\}$ (this is indeed the English alphabet we know of)
 - In the context of binary strings, $\Sigma = \{0, 1\}$
 - In the context of phone numbers, $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

2. A string is a finite sequence of symbols in the alphabet.
 - If $\Sigma = \{a, b, c, \ldots, z\}$:
 - discrete, math, and qpcuyzmg are all strings, regardless of whether we recognize them (you probably won't recognize the last word).
 - discrete and cs230 are not strings because they use symbols not in the alphabet (despite that you can probably recognize both words).
 - If $\Sigma = \{0, 1\}$:
 - 000001, 111, 1, 10110 are all strings.
 - 1111111111 is not a string because it is not finite.
 - If $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$:
 - 9191234567 is a string.
 - 01234567890123456789 is also a string. You know it does not represent anyone's phone numbers, but we have not yet formalized what makes valid phone numbers yet.
 - The size of a string is the length of the sequence.
 - We use the symbol λ (or ε) to represent the empty string. λ (or ε) has size 0 and it is a valid string for every alphabet.

3. A language is a (not necessarily finite) set of strings over the alphabet Σ.
 - If $\Sigma = \{a, b, c, \ldots, z\}$:
 - \{discrete, math\} is a language (that contains only the two words).
 - \emptyset is a language (that contains no words).
 - You can try to define the set of all valid English words this way (but other people may not agree with your version).
 - If $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$:
 - We can list all 10-digit phone numbers one-by-one. That is a set of $10^{10} = 10,000,000,000$ strings.
There must be a better way of describing the set of 10-digit phone numbers, you say. Indeed there is. Here are some useful notations:

- The **concatenation** of two strings \(u \) and \(v \) can be written as just \(uv \).
 - For example, if \(u = \text{disc} \) and \(v = \text{rete} \), then \(uv = \text{discrete} \). Note how we use bold fonts for strings and italic fonts for symbols.
 - It can also be written as \(u \circ v \). Do not conflate with function composition.
 - \(u \circ \lambda = \lambda \circ u = u \).

- We can simply use the cardinality notation to represent the size of a string.
 - \(|uv| = 8 \).

- \(v^k \) represents the concatenation of \(k \) identical copies of \(v \).
 - \(v^2 = \text{reterete} \).
 - \(v^0 = \lambda \).
 - \((uv)^2 = \text{discretediscrete} \).

- \(\Sigma^* \) represents the set of all strings using symbols in \(\Sigma \), while \(\Sigma^+ \) represents the set of all **nonempty** strings using symbols in \(\Sigma \).
 - \(\Sigma^+ = \Sigma^* \setminus \{\lambda\} \).

- If \(L \) is a language, \(L^k \) represents the concatenation of \(k \) (not necessarily identical) strings in \(L \).
 - If \(L = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \), then \(L^{10} \) is the set of 10-digit phone numbers.

- \(L^* \) represents the concatenation of zero or more strings in \(L \), while \(L^+ \) represents the concatenation of one or more strings in \(L \).
 - \(L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \ldots \)
 - \(L^+ = L^1 \cup L^2 \cup L^3 \ldots \)
 - \(L^+ = L^* \setminus L^0 = L^* \setminus \{\lambda\} \)
 - As you see, since languages are sets, all set operators can be used on languages.