You may or may not have heard about the Euclidean Algorithm. Usually, it is introduced as a systematic method to find \(\text{GCD}(a, b) \) of two positive integers \(a \) and \(b \). The Euclidean Algorithm relies on a simple result:

\[\text{Theorem. For two positive integers } a > b, \text{ if } a \mod b = c, \text{ then } \text{GCD}(a, b) = \text{GCD}(b, c). \]

Proof. We only need to prove that the set of (positive) common divisors of \(a \) and \(b \) is identical to the set of (positive) common divisors of \(b \) and \(c \).

- Suppose \(p \) is a (positive) common divisor of \(a \) and \(b \). Then \(a = mp \) and \(b = np \) for some positive integers \(m > n \). Since \(a \mod b = c \), we know \(a = kb + c \) for some positive integer \(k \). Therefore, we have \(c = a - kb = mp - knp = (m - kn)p \), which implies \(p \) divides \(c \).
- Suppose \(p \) is a (positive) common divisor of \(b \) and \(c \). Then \(b = xp \) and \(c = yp \) for some positive integers \(x > y \). (We know \(x > y \) because \(b > c \).) Therefore, we have \(a = kb + c = kxp + yp = (kx + y)p \), which implies \(p \) divides \(a \).

For a concrete example, suppose we were to find the greatest common divisor of 230 and 2024:

\[
2024 = 230 \times 8 + 184 \quad // \text{ therefore } \text{GCD}(230,2024) = \text{GCD}(230,184) \\
230 = 184 \times 1 + 46 \quad // \text{ therefore } \text{GCD}(230,184) = \text{GCD}(46,184) \\
184 = 46 \times 4 \quad // \text{ therefore } \text{GCD}(46,184) = 46
\]

Therefore, we have \(\text{GCD}(230, 2024) = 46 \) (note that the comments on the right make a chain-of-equivalence).

What is less obvious is the Euclidean Algorithm can also help find the multiplicative inverse in modulo arithmetic (if one exists). More specifically, if \(\text{GCD}(a, b) = 1 \), then the process of Euclidean Algorithm actually reveals the mystery number \(z \) such that \(a \times z \equiv 1 \pmod{b} \). Look at this concrete example where we find the greatest common divisor of 230 and 7, although we know in advance that it is 1 (because 7 is a prime and 230 is not a multiple of 7):

\[
230 = 7 \times 32 + 6 \quad // \text{ in other words, } 6 = 230 - 7 \times 32 \\
7 = 6 \times 1 + 1 \quad // \text{ in other words, } 1 = 7 - 6 \times 1 \\
6 = 1 \times 6
\]

Now let’s look at the notes on the right-hand side and combine the information there:
This implies $1 \equiv 230 \times (-1) \pmod{7}$. If we don't want the mystery number to be negative, we can also conclude that $1 \equiv 230 \times 6 \pmod{7}$, since $6 \equiv (-1) \pmod{7}$.

Although in the example above 7 is a prime, the algorithm works for any two coprime integers a and b. Therefore, it is more powerful (strictly speaking about finding multiplicative inverses) than Fermat's Little Theorem, because the latter only works when b is a prime.

Practice the Euclidean Algorithm in the next practice quiz.