Euclidean Algorithm

You may or may not have heard about the Euclidean Algorithm. Usually, it is introduced as a systematic method to find $GCD(a, b)$ of two positive integers a and b. The Euclidean Algorithm relies on a simple result:

Theorem. For two positive integers $a > b$ *, if a mod* $b = c$ *, then* $GCD(a, b) = GCD(b, c)$.

Proof. We only need to prove that the set of (positive) common divisors of \bm{a} and \bm{b} is identical to the set of (positive) common divisors of \bm{b} and \bm{c} .

- Suppose p is a (positive) common divisor of a and b . Then $a=mp$ and $b=np$ for some positive integers $m > n$. Since $a \mod b = c$, we know $a = kb + c$ for some positive integer k. Therefore, we have $c = a - kb = mp - knp = (m - kn)p$, which implies p divides c.
- Suppose p is a (positive) common divisor of b and c. Then $b=xp$ and $c=yp$ for some positive integers $x > y$. (We know $x > y$ because $b > c$.) Therefore, we have $a = kb + c = kxp + yp = (kx + y)p$, which implies p divides a.

For a concrete example, suppose we were to find the greatest common divisor of 230 and 2024 :

```
2024=230\times8+184// therefore GCD(230, 2024) = GCD(230, 184)230=184\times 1+46// therefore GCD(230, 184) = GCD(46, 184)// therefore GCD(46, 184) = 46184 = 46 \times 4
```
Therefore, we have $GCD(230, 2024) = 46$ (note that the comments on the right make a chain-ofequivalence).

What is less obvious is the Euclidean Algorithm can also help find the multiplicative inverse in modulo arithmetic (if one exists). More specifically, if $GCD(a, b) = 1$, then the process of Euclidean Algorithm actually reveals the mystery number z such that $a \times z \equiv 1 \pmod{b}$. Look at this concrete example where we find the greatest common divisor of 230 and 7 , although we know in advance that it is 1 (because 7 is a prime and 230 is not a multiple of 7):

$$
230 = 7 \times 32 + 6
$$
 // in other words, $6 = 230 - 7 \times 32$
 $7 = 6 \times 1 + 1$ // in other words, $1 = 7 - 6 \times 1$
 $6 = 1 \times 6$

Now let's look at the notes on the right-hand side and combine the information there:

 $1 = 7 - 6 \times 1$ $= 7 - (230 - 7 \times 32) \times 1$ $= 7 \times 33 - 230$ $= 7 \times 33 + 230 \times (-1).$

This implies $1 \equiv 230 \times (-1) \pmod{7}$. If we don't want the mystery number to be negative, we can also conclude that $1 \equiv 230 \times 6 \pmod{7}$, since $6 \equiv (-1) \pmod{7}$.

Although in the example above $\overline{7}$ is a prime, the algorithm works for any two coprime integers \overline{a} and **. Therefore, it is more powerful (strictly speaking about finding multiplicative inverses) than Fermat's** Little Theorem, because the latter only works when b is a prime.

Practice the Euclidean Algorithm in the next practice quiz.