Deterministic Finite Automata

Automata are conceptual models of computers. There are many kinds of such models, depending on
several aspects such as whether or not memory is allowed/is finite, etc.

The simplest form among all automata is Deterministic Finite Automata (DFA). A DFA can be
formally described as a 5-tuple (@, X, qo, F, §):

« @ is a finite set of states;
Y is the alphabet (so that all inputs are strings of this alphabet);
go € Q is the initial state;
o F C Q is the set of final states;
0 : (Q x X) — @ is the state transition function.
o Its domain is the cartesian product of the set of states and the alphabet.
o Its codomain is the set of states.
o In combination, this function specifies which state the DFA goes to next for every possible
state and every possible input symbol.

Let's look at a concrete example. Here is an illustration of a DFA that "accepts" even binary numbers:

1
Q = {qO, ql} (there are only two states);
¥ = {0, 1} (the context is about binary numbers);
q0 is the initial state;
{q1} C @ is the set of final states (just one);

d: (Q x X) — Q is represented by the following table:
01

q0|q1q0
ql|ql q0

Basically, regardless of which state the DFA is in, it goes to (or stays at) g0 when the next input
symbol is 1, and goes to (or stays at) g1 whenever the next input symbol is 0.



This DFA "accepts” even binary numbers in the following sense: if we feed all the digits in a binary
number into this DFA, one digit at a time, the DFA ends at the final state q1 if and only if the last
digit is a 0, which is equivalent to saying the binary number is even.

You may want to "simulate" a few inputs (e.g., 101, 1011, 100, 110110) to get a sense of how this
DFA really works. Remember, before any input, the DFA is at the start state.

From the above example, we can see that:

» DFAs are deterministic because the state transition function § fully specifies, for each state and
each input symbol, exactly one next state that the DFA should go to.

o If this is instead just a relation, that means given a particular current state and an input
symbol, the FA can go to one of multiple possible next states. That makes it a Non-
deterministic Finite Automata (NFA) which is beyond what we can discuss in 230.

o DFAs are finite because every of the five elements of it is finite.
e The set of strings that make the DFA end at a final state is a language. For a DFA M, we
denote L(M) the set of all strings on X "accepted" by M.

o For the example above, L(M) = {0, 1}* o 0 (convince yourself that this language
characterizes even binary numbers.)

o Not all languages can be recognized by a DFA.

o We say a language is regular if and only if it is accepted by some DFA. This is the same
"regular" as in "regular expressions".

Kleene's Theorem completely characterizes what languages are regular:

(Kleene's Theorem.) Fix the alphabet X.
e The empty language & is regular.
e For each symbol a € %, {a} is regular.
o If L is regular, then L* is also regular.

o If Ly and Ly are regular, then Ly U Ly and L; o Ly are both regular.

We can see that Kleene's Theorem is in fact a recursive definition of the set of regular languages.
You may want to verify that the language of even binary numbers, {0,1}* o 0, is indeed regular.



