Deterministic Finite Automata

Automata are conceptual models of computers. There are many kinds of such models, depending on several aspects such as whether or not memory is allowed/is finite, etc.

The simplest form among all automata is **Deterministic Finite Automata (DFA)**. A DFA can be formally described as a 5-tuple $(Q, \Sigma, q_0, F, \delta)$:

- Q is a finite set of states;
- \bullet Σ is the **alphabet** (so that all inputs are strings of this alphabet);
- $q_0 \in Q$ is the **initial state**;
- $F \subseteq Q$ is the **set of final states**;
- $\cdot \delta : (Q \times \Sigma) \rightarrow Q$ is the state transition function.
	- o Its domain is the cartesian product of the set of states and the alphabet.
	- \circ Its codomain is the set of states.
	- In combination, this function specifies *which state the DFA goes to next* for *every possible state* and *every possible input symbol*.

Let's look at a concrete example. Here is an illustration of a DFA that "accepts" even binary numbers:

- $Q = \{q0, q1\}$ (there are only two states);
- $\Sigma = \{0,1\}$ (the context is about binary numbers);
- \cdot $q0$ is the **initial state**;
- $\{q1\} \subseteq Q$ is the **set of final states** (just one);
- $\overline{\cdot}\hspace{0.1cm} \delta:(Q\times \Sigma)\to Q$ is represented by the following table:

Basically, regardless of which state the DFA is in, it goes to (or stays at) $q0$ when the next input symbol is 1, and goes to (or stays at) $q1$ whenever the next input symbol is 0.

This DFA *"accepts"* even binary numbers in the following sense: if we feed all the digits in a binary number into this DFA, one digit at a time, the DFA ends at the final state $q1$ if and only if the last digit is a 0 , which is equivalent to saying the binary number is even.

You may want to "simulate" a few inputs (e.g., $101, 1011, 100, 110110$) to get a sense of how this DFA really works. *Remember, before any input, the DFA is at the start state.*

From the above example, we can see that:

- DFAs are deterministic because the state transition **function** δ fully specifies, for each state and each input symbol, **exactly one** next state that the DFA should go to.
	- If this is instead just a **relation**, that means given a particular current state and an input symbol, the FA can go to one of multiple possible next states. That makes it a *Nondeterministic Finite Automata (NFA)* which is beyond what we can discuss in 230.
- DFAs are finite because every of the five elements of it is finite.
- \bullet The set of strings that make the DFA end at a final state is a language. For a DFA \mathbf{M} , we denote $L(M)$ the set of all strings on Σ "accepted" by M.
	- $\,\circ\,$ For the example above, $L(\mathbf M)=\{0,1\}^*\circ 0$ (convince yourself that this language characterizes even binary numbers.)
	- o Not all languages can be recognized by a DFA.
	- We say a language is *regular* if and only if it is accepted by some DFA. This is the same "regular" as in "regular expressions".

Kleene's Theorem completely characterizes what languages are regular:

(Kleene's Theorem.) Fix the alphabet Σ .

- The empty language \emptyset is regular.
- For each symbol $a \in \Sigma$, $\{a\}$ is regular.
- If L is regular, then L^* is also regular.
- If L_1 and L_2 are regular, then $L_1 \cup L_2$ and $L_1 \circ L_2$ are both regular.

We can see that Kleene's Theorem is in fact a recursive definition of the set of regular languages. You may want to verify that the language of even binary numbers, $\{0,1\}^* \circ 0$, is indeed regular.