Cryptography Basics

To achieve secure communication, we encrypt any plain information (called plaintext) into a
corresponding ciphertext, using some critical information (called key). We then send the ciphertext to
our trusted parties, who will decrypt it back into the plaintext.

In discrete math terms, the key actually operates as an invertible function:
f(plaintext) = ciphertext

f~!(ciphertext) = plaintext

A very crude way of categorizing crypto systems is the following: they are either symmetric or
asymmetric.

« In symmetric crypto systems, there is only one key f. Given f, it is very easy to compute/obtain
f‘l, and vice versa. The oldest crypto systems (before 1970s) are all symmetric.
o The weakness of such a system is obvious: once f is known to malicious parties, there is no
security anymore.
o f itself therefore needs to be kept as a secret. Then how do we communicate f itself to our
trusted parties?
« In asymmetric crypto systems, there is a public key f and a private key f~1, such that given f, it
is very hard (unreasonably hard) to directly compute/obtain f‘l.
o Therefore, f can be public information. It doesn't hurt if malicious parties know f - they won't
be able to find 1.
o Only the receiver needs to know f_l; anyone who wishes to send information only needs to
know f. Therefore, f~! never needs to be communicated.
o This is very nice, but the catch is all in the unreasonably hard phrase. What is unreasonably
hard to compute 20 years ago might not be so today. What is unreasonably hard to compute
now might not be so in 2030.

You have all used asymmetric crypto systems.

If you have used coursework.cs.duke.edu (https://coursework.cs.duke.edu/) , gitlab.cs.duke.edu
(https://gitlab.cs.duke.edul/)_, or Github, you have probably configurated your SSH key
(https://lcoursework.cs.duke.edu/-/profile/keys) . That's an asymmetric crypto system. When you
"configure your SSH key", your device actually generates a pair of public and private

keys. Depending on how you set it up, you might have used the Ed25519 =
(https:/led25519.cr.yp.to/) algorithm, the ECDSA & (https://cryptobook.nakov.com/digital-
signatures/ecdsa-sign-verify-messages)_algorithm, or the RSA algorithm. This EM will only discuss the



https://coursework.cs.duke.edu/
https://gitlab.cs.duke.edu/
https://gitlab.cs.duke.edu/
https://coursework.cs.duke.edu/-/profile/keys
https://coursework.cs.duke.edu/-/profile/keys
https://ed25519.cr.yp.to/
https://ed25519.cr.yp.to/
https://ed25519.cr.yp.to/
https://ed25519.cr.yp.to/
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages

RSA algorithm, in its most simple/abstract form (which is actually not the form in use in real
platforms). This is partly because it is one of the first developed asymmetric crypto systems, but also
partly because the math behind it (for its core part) is very accessible.



