Evidence on Vertical Mergers

Allan Collard-Wexler Duke

October 25, 2016

Evidence on Vertical Mergers

So far we have seen different reasons for vertical mergers:

- Coordination of Prices (Double Monopoly).
- ► Coordination of Advertising (Retail Price Maintenance).
- Excluding other input suppliers, possibly more efficient. (Naked Exclusion and Chicago Irrelevance Result).

Now we need some evidence.

 Historically, mergers with as little as 3% of market share were stopped. (Brown Shoe Decision)

Two Empirical Papers for Today

 Hortacsu and Syverson "Cementing Relations" Journal of Political Economy (2008).

Pro-productivity motives for vertical integration, and really clean industry.

Tasneem Chipty "Vertical Integration, Market Foreclosure and Consumer Welfare in the Cable Television Industry", American Economic Review (2001). More negative viewpoint here.

Supply Assurance and Bargaining over joint investments

- Firms may integrate to assure coordination of inputs.
- It is often difficult to contract around unforeseen events (Hurricane Sandy say).
- So it might be easier to just have joint ownership.
- Notice that the first large scale companies were in Railroads, where coordination was essential.
- This opens up the problem of the boundaries of the firms: transactions mediated by markets versus firms (Williamson Nobel Prize).

Hortacsu-Syverson on Cement

- Cement and Ready-Mix Concrete Plant Mergers.
- About 200 Cement plants, and 5,000 ready-mix concrete plants in the United States.
- ► Data from the Census of Manufacturing 1963-1997 (for this paper).
- Observe mergers via changing ownership codes.
- Sufficient data on plant operations to get at productivity, and marginal costs.
- Tons of mergers in this industry.
- In most countries, cement and concrete are vertically integrated. Not in the U.S. for regulatory reasons.

Hortacsu-Syverson: Prices

Do vertical merger raise prices or efficiency?

Initial Regressions:

$$p_{it} = \mu_i + \alpha$$
share integrated_{it}

And

 $q_{it} = \mu_i + \alpha$ number integrated firms_{it}

where the market is defined by CEA (Component Economic Area: Clusters of Counties where people commute).

Hortacsu-Syverson: Initial Evidence

TABLE 1 Market-Level Relationships between Average Prices, Total Quantities, and the Extent of Integration

	QUANT	Quantity-Weighted Average Price				Total Quantity			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
R^2	.065	.070	.430	.429	.072	.185	.890	.891	
Market share of ver-	143*		083*		1.532^{*}		.331*		
tically integrated firms	(.029)		(.041)		(.290)		(.154)		
Number of verti-		037*		014		.637*		.153*	
cally integrated firms		(.006)		(.011)		(.043)		(.034)	
Market fixed									
effects?	No	No	Yes	Yes	No	No	Yes	Yes	

NOTE.—The table shows the coefficients obtained by regressing quantity-weighted average concrete prices and total concrete quantities sold in a market on either the market share or the number of vertically integrated firms operating in the market. The sample consists of 1,873 market-year observations. Standard errors are clustered by market.

* Significant at the 5 percent level.

Hortacsu-Syverson: Variation in Mergers

 TABLE 2

 Evolution of Vertical Integration in the Cement and Ready-Mixed Concrete Industries

	1963	1967	1972	1977	1982	1987	1992	1997
Cement plants that are verti-								
cally integrated (%)	21.9	47.4	41.9	34.8	32.5	35.2	49.5	30.5
Cement sales from vertically								
integrated producers (%)	25.2	51.2	48.4	41.0	49.5	51.3	75.1	55.4
Ready-mixed plants that are								
vertically integrated (%)	1.8	3.2	3.8	3.1	3.0	5.5	11.1	10.6
Ready-mixed sales from verti-								
cally integrated producers								
(%)	6.1	8.9	10.0	8.7	8.5	11.3	14.4	14.2
Ready-mixed plants in mul-								
tiunit firms (%)	24.8	26.4	32.2	34.3	35.4	41.7	49.6	55.6
Ready-mixed sales from								
plants in multiunit firms								
(%)	40.1	46.3	52.4	54.0	50.9	57.5	61.3	65.0

NOTE.-The table shows the fraction of plants (or sales) accounted for by firms of various organizational types in the cement and ready-mixed concrete industries.

.

Hortacsu-Syverson: Prices

	WITH	11N-Mark	et Differ	ENCE	Сн	ANGE FOR	Continu	ERS
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Observations	12,553	12,553	8,555	8,555	4,025	4,025	2,439	2,439
R^2	.424	.425	.501	.501	.456	.460	.575	.576
Vertical inte-	022*	017*	006	006	.011	.011	.003	.005
gration indicator	(.006)	(.006)	(.007)	(.007)	(.035)	(.035)	(.034)	(.034)
Multiunit		012*		001		037		033
indicator		(.004)		(.005)		(.020)		(.028)
TFP		, ,	214*	215*		, ,	237*	237*
			(.015)	(.015)			(.028)	(.028)
	INTEG	rated vs. Entr	UNINTEG ANTS	RATED	Integr te	ated Ent grated I	frants vs Incumben	. Unin-
	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Observations	(9) 2,771	(10) 2,771	(11) 2,025	(12)	(13) 7,490	(14) 7,490	(15) 6,104	(16) 6,104
Observations R^2	(9) 2,771 .563	(10) 2,771 .566	(11) 2,025 .655	(12) 2,025 .655	(13) 7,490 .430	(14) 7,490 .430	(15) 6,104 .523	(16) 6,104 .523
Observations R ² Vertical inte-	(9) 2,771 .563 037*	(10) 2,771 .566 025	(11) 2,025 .655 020	(12) 2,025 .655 012	(13) 7,490 .430 023	(14) 7,490 .430 023	(15) 6,104 .523 012	(16) 6,104 .523 012
Observations R ² Vertical inte- gration indicator	(9) 2,771 .563 037* (.018)	$(10) \\ 2,771 \\ .566 \\025 \\ (.019)$	(11) 2,025 $.655020(.020)$	(12) $2,025$ $.655$ 012 $(.020)$	(13) 7,490 .430 $023(.012)$	$(14) \\7,490 \\.430 \\023 \\(.012)$	$(15) \\ 6,104 \\ .523 \\012 \\ (.012) \\ (.012)$	$(16) \\ 6,104 \\ .523 \\012 \\ (.012)$
Observations R ² Vertical inte- gration indicator Multiunit	(9) 2,771 .563 037* (.018)	(10) 2,771 .566025 (.019)032*	(11) 2,025 .655 $020 (.020)$	(12) $2,025$ $.655$ 012 $(.020)$ 025	(13) 7,490 .430 023 (.012)	(14) 7,490 .430 023 (.012) NA	$(15) \\ 6,104 \\ .523 \\012 \\ (.012) \\ (.012)$	(16) 6,104 .523 012 (.012) NA
Observations R ² Vertical inte- gration indicator Multiunit indicator	(9) 2,771 .563 037* (.018)	(10) $2,771$ $.566$ 025 $(.019)$ $032*$ $(.012)$	(11) 2,025 .655 020 (.020)	(12) $2,025$ $.655$ 012 $(.020)$ 025 $(.014)$	(13) 7,490 .430 023 (.012)	(14) 7,490 .430 023 (.012) NA	(15) 6,104 .523 012 (.012)	(16) 6,104 .523 012 (.012) NA
Observations R ^e Vertical inte- gration indicator Multiunit indicator TFP	(9) 2,771 .563 037* (.018)	(10) $2,771$ $.566$ 025 $(.019)$ $032*$ $(.012)$	(11) 2,025 .655 020 (.020) 218*	(12) $2,025$ $.655$ 012 $(.020)$ 025 $(.014)$ $215*$	(13) 7,490 .430 023 (.012)	(14) 7,490 .430 023 (.012) NA	(15) 6,104 .523 012 (.012) 221*	(16) 6,104 .523 012 (.012) NA 221*

TABLE 4 Vertical Integration and Ready-Mixed Concrete Prices: Plant-Level Results

NOTE.—The table shows the results from regressing plant-level concrete prices on a number of variables. Vertical integration (multiunit) indicator is equal to one if the plant is in a vertically integrated (multiunit/multiplant) firm and zero otherwise; TFP is the plant's quantity-based total factor productivity. See the text for details. In the vertically integrated entrants vs. non-vertically integrated incumbents comparison, there are no observations of new multiunit

Hortacsu-Syverson: Different Comparisons Groups

- Vertical Integrated, versus Not.
- ► Just look at new plants, or just plants in the market that were acquired.
- TFP is productivity: think of it as a measure of average costs.

Hortacsu-Syverson: So Prices are lower, but why

Prices could drop because:

- Costs drop.
- Some other reason.

Hortacsu-Syverson: Productivity

8,555

.308

(.014)

.043*

Integrated Within-Integrated vs. Entrants vs. Market Change for Unintegrated Unintegrated Difference Continuers Entrants Incumbents (3)(1)(2)

(4)

6,104

.352

.046*

(.028)

T	ABLE	15
PLANT-LEVEL	TFP	Comparisons

NOTE.-The table shows the results from regressing ready-mixed concrete plants' TFP levels on an indicator for the plant being in a vertically integrated firm. All regressions include market-year fixed effects.

2,439

.419

.102

(.055)

2,025

.573

.054

(.045)

* Significant at the 5 percent level.

Observations

indicator

Vertical integration

 R^2

Hortacsu-Syverson: Productivity \rightarrow Prices

Now we can separate the effects of vertical integration through productivity, versus those through integration directly.

Vertical Integration and Ready-Mixed Concrete Prices: Market-Level Results Benchmark Specification										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Observations <i>R</i> ² Market share of vertically inte- grated firms	1,870 .087 125* (.028)	1,870 .433 090* (.041)	1,870 .434 086* (.041)	1,550 .573 043 (.039)	1,550 .573 043 (.039)	1,870 .087	1,870 .432	1,870 .432	1,550 .573	1,550 .573
Market share of multiunit firms			015 (.022)		.001 (.024)					
Number of vertically integrated firms						028* (.007)	015 (.011)	013 (.011)	009 (.009)	007 (.009)
Number of multiunit firms								003 (.004)		004 (.004)
Quantity-weighted average TFP				293* (.054)	293* (.054)				294* (.054)	294* (.054)
Market fixed effects?	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes

NOTE.—The table shows the coefficients obtained by regressing quantity-weighted average concrete prices in a market on either the market share or the number of vertically integrated firms operating in the market. The market share or number of multiumi firms and the quantity-weighted average TPF in the market are also included in some specifications. All regressions control for the HHI and density of demand in the market as well as were fiftest (coefficients not reported). Sundard errors are clustered by market.

* Significant at the 5 percent level.

Hortacsu-Syverson: Why are the integrated plants more efficient? TABLE 16

		Growth of						
	Labor Productivity	Real Revenue	Total Employment	Total Hours	Nonproduction Worker Ratio	Capital- Labor Ratio		
	A. Changes	among Co	ntinuers (Cond Previous C	litioning Census)	on Being Uninteg	grated in		
Observations R ² Vertical inte- gration indicator	15,919 .194 .105* (.049)	16,358 .274 399* (.060)	16,274 .204 396* (.061)	15,933 .217 439* (.064)	9,166 .189 030 (.022)	16,271 .180 .018 (.076)		
	B. Int	egrated En	trants Compar	ed to Un	integrated Entrar	ıts		
Observations R^2 Vertical integration indicator	7,681 .330 .336* (.047)	8,005 .339 .125 (.079)	7,871 .325 157* (.073)	7,687 .323 162* (.078)	7,870 .34 044* (.014)	5,405 .433 .263* (.073)		
	C. Integ	grated Enti	ants Compared	d to Unir	ntegrated Incumb	ents		
Observations R ² Vertical inte- gration indicator	18,038 .240 .358* (.038)	18,310 .228 281* (.063)	$18,220 \\ .193 \\510^{*} \\ (.060)$	18,045 .195 514* (.064)	18,217 .222 061* (.012)	12,760 .378 .259* (.058)		

NOTE. - This table reports differences in key dependent variables (listed at the head of each column) across integrated and unintegrated producers. Panel A compares growth rates across integrated and unintegrated continuers (plants that survive for two consecutive censuses). Panel B compares integrated and unintegrated entrants (plants appearing in their first census). Panel C compares integrated entrants to unintegrated incumbents. Market-year fixed effects are included in all specifications.

Next Paper: Chipty on Cable TV

- Cable TV is important: 90 percent of americans have it, and they spend about 2.8 hours a day watching TV (18 percent of waking hours).
- Lots of mergers, both horizontal (between local cable monopolies), and vertical (content providers and local monopolies).
- I've always though of net neutrality to be about foreclosure as well.

Chipty: Cable TV Structure

FIGURE 1. INDUSTRY STRUCTURE

Chipty: Data

- ▶ 1991 Data on 11,039 cable franchises.
- This data comes from the Factbook, surveys of cable companies.
- Things like price of basic and premium, as well as number of channels are in here.
- Data on integration is harder: look for ownership stakes in local cable companies.
- Demographics and TV market from the U.S. Census and Arbitron (also in radio).

Chipty:Data

	Price-quantity-service variables		
Price of premium cable	Cost of living adjusted, average monthly price of premium cable.	System	9.42
Price of basic cable	Cost of living adjusted, monthly price of basic cable.	System	16.11
Basic penetration rate	Fraction of homes passed that subscribe to basic cable, defined as basic subscriptions divided by homes passed.	System	0.65
Basic-only penetration rate	Fraction of homes passed that subscribe only to basic cable, defined as (basic subscriptions – premium subscriptions) divided by homes passed.	System	0.28
Premium penetration rate	Fraction of homes passed that subscribe to premium cable, defined as premium subscriptions divided by homes passed.	System	0.37
Premium-also penetration rate	Fraction of basic subscribers that subscribe also to premium cable, defined as premium subscriptions divided by basic subscriptions.	System	0.59
Premium services	Number of premium program services offered.	System	3.39
Basic services	Number of basic program services offered.	System	16.47
Basic program duplication	Number of basic program services offered/number of program service types offered.	System	1.66
	System and owner characteristics		
System age	Number of years since franchise began.	System	14.55
System size	Channel capacity.	System	38.40
	Number of homes covered locally.	System	18,963.17
Owner's horizontal size	Number of homes covered nationally.	Owner	3,539,030.36
Integration with basic services	Number of basic program services with which the system owner is vertically integrated.	Owner	2.58
Integration with premium services	Number of premium program services with which the system owner is vertically integrated.	Owner	0.11

Chipty: Integrated vs Not Integrated

Variable	Full sample $N = 1,919$	Unintegrated systems N = 1,269	Basic systems N = 544	Premium systems N = 106
Price of basic cable	16.383	15.984	17.273	16.596
Price of premium cable	9.573	9.523	9.490	10.599
Basic penetration rate	0.652	0.649	0.656	0.673
Basic-only penetration rate	0.284	0.310	0.232	0.239
Premium penetration rate	0.369	0.339	0.425	0.434
Premium-also penetration rate	0.592	0.546	0.683	0.676
Premium services	3.388	3.160	4.002	2.972
Basic services	16.475	14.809	19.890	18.887
Integration with basic services	2.580	0.000	7.763	6.868
Integration with premium services	0.105	0.000	0.000	1.906

TABLE 2—AVERAGE PRODUCT CHARACTERISTICS BY OWNERSHIP STATUS

Notes: Unintegrated systems are systems where the operator is vertically unintegrated. Basic systems are systems where the operator owns at least one basic service, but no premium services. Premium systems are systems where the operator owns at least one premium service

Chipty: Regression Analysis

Chipty runs regressions of the form:

Number of Channels Basic_i = α_B Vertical Integration Basic_i + α_P Vertical Integration Premium_i + $X_i\delta$

Number of Channels Premium_i = β_B Vertical Integration Basic_i + β_P Vertical Integration Premium_i + $X_i\delta$

Chipty: Regression Analysis

TABLE 3-EFFECTS OF INTEGRATION ON THE EQUILIBRIUM NUMBERS OF BASIC AND PREMIUM SERVICES OFFERED

		Panel A: 1	Number of I	Basic Services	offered		Panel B: Number of Premium Services Offered					
		(1)			(2)			(3)			(4)	
Variable	Coefficient	t-statistic robust	t-statistic OLS	Coefficient	t-statistic robust	t-statistic OLS	Coefficient	t-statistic robust	t-statistic OLS	Coefficient	t-statistic robust	t-statistic OLS
Constant	23.967	1.814	2.759	4.039	0.314	0.429	-11.265	3.075	4.125	-13.496	3.558	4.918
Integration with												
basic services	0.176	2.975	5.968	0.150	3.396	4.664	-0.015	1.126	1.604	-0.018	1.334	1.895
Integration with												
premium	0.021	6.641	2 000	0.750	0.000	2.017	0.604	10 724	0.07	0.505	10 700	7 705
services	-0.931	5.541	3.908	-0.759	2.882	2.916	-0.604	12.734	8.07	-0.585	12.726	1.125
owner's												
horizontal size	0.034	0 297	0.620	0.052	0.435	0.875	0.051	2 254	2 963	0.053	2 239	3 047
System age	-0.044	3.020	3.329	-0.099	6.316	6.968	-0.005	0.908	1.305	-0.012	1.876	2.799
Natural log of												
homes passed	2.218	17.412	26.230	2.714	19.841	30.850	0.365	8.506	13.751	0.421	10.282	16.438
Channel capacity	0.181	12.181	19.253				0.020	4.685	6.855			
Natural log of												
income	-0.909	0.721	1.143	-0.197	0.172	0.227	0.237	0.834	0.950	0.317	1.112	1.255
Natural log of												
population												
density	-0.016	0.113	0.131	0.139	0.920	1.052	0.097	1.743	2.534	0.114	2.055	2.960
Younger	10 404	1.044	1 202	24 207	0.047	0.014	1.040	0.005	0.201	0.000	0.001	0.000
viewersnip	-12.484	1.044	1.203	-26.207	2.047	2.516	1.243	0.395	0.381	-0.293	0.091	1.052
Non white	-0.090	1.040	1.450	-4.077	0.005	0.887	1.201	0.840	0.697	1.420	0.995	1.055
viewershin	2 111	1 337	1.940	2 031	1 329	1 708	0 494	1 141	1 444	0.485	1.117	1 401
Household size	0.420	0.283	0.350	1.894	1.110	1.446	0.226	0.607	0.599	0.391	1.019	1.025
Natural log of	01120	01-00	01000	1107.			0.220	0.000	0.077	0.077		11020
television												
households	-1.599	3.602	4.332	-0.635	1.364	1.590	0.473	1.784	4.077	0.581	2.143	4.993
Area of dominant												
influence rank	-0.026	3.044	3.727	-0.011	1.138	1.405	0.007	1.464	3.078	0.008	1.818	3.842
Adjusted R ²		0.624			0.551			0.389			0.374	

Notes: Parameters estimated using ordinary least squares. Robust variance estimation allows for heteroskedasticity and for correlation in errors across systems owned by the same owner. Absolute value of t-statistics shown in columns adjacent to coefficient.

Chipty: Case Studies

Chipty looks at specific cases of vertical integration: home shopping, and movie channels.

- Home Shopping: QVC, HSN. If you own QVC, are you more likely to carry it, and less likely to carry HSN.
- Movie Network: AMC. Similarly, does ownership of AMC raise the probability of carrying it.

Chipty: Home Shopping (QVC)

Marginal Effect of a Probit: Probability of having QVC

		(1)
Variable	Marginal effect	t-statistic robust
System owner vertically integrated with QVC $(1 = yes, 0 = no)$	0.328	5.430
Natural log of owner's horizontal size	0.020	1.920
System age	0.002	0.630
Natural log of homes passed	0.090	6.510
Channel capacity	0.006	3.380
Natural log of income	-0.233	1.690
Natural log of population density	0.033	1.970
Younger viewership	-0.428	0.270
Older viewership	1.240	1.700
Non-white viewership	-0.003	0.020
Household size	0.250	1.290
Natural log of television households	-0.006	0.080
Area of dominant influence rank	0.000	0.210
1-logL/log0		0.200
Predicted fraction of all systems that carry QVC Fraction of all systems that carry $QVC = 0.421$		0.403

Chipty: Home Shopping (HSN)

Marginal Effect of a Probit: Probability of having HSN

		(1)
Variable	Marginal effect	t-statistic robust
System owner vertically integrated with QVC $(1 = yes, 0 = no)$	-0.249	6.590
Natural log of owner's horizontal size	0.012	1.270
System age	-0.002	0.700
Natural log of homes passed	0.063	6.100
Channel capacity	0.006	5.770
Natural log of income	-0.107	1.090
Natural log of population density	0.013	1.000
Younger viewership	-1.313	0.960
Older viewership	0.766	1.370
Non-white viewership	-0.065	0.500
Household size	0.312	1.920
Natural log of television households	-0.079	1.680
Area of dominant influence rank	-0.002	2.030
1-logL/log0		0.177
Predicted fraction of all systems that carry HSN Fraction of all systems that carry HSN $= 0.280$		0.234

Chipty: AMC Channel (Premium Movies)

		(1)
Variable	Marginal effect	<i>t</i> -statistic robust
System owner vertically integrated with a premium		
movie service $(1 = yes, 0 = no)$	-0.155	2.250
System owner vertically integrated with AMC		
(1 = yes, 0 = no)	0.321	2.620
Natural log of owner's horizontal size	0.004	0.220
System age	0.002	1.560
Natural log of homes passed	0.092	5.760
Channel capacity	0.007	5.640
Natural log of income	0.008	0.080
Natural log of population density	-0.007	0.350
Younger viewership	2.134	1.540
Older viewership	-0.122	0.170
Non-white viewership	-0.178	0.960
Household size	-0.234	1.240
Natural log of television households	-0.068	1.310
Area of dominant influence rank	-0.001	1.280
1-logL/logL0		0.216

Chipty: Regression Analysis – Prices (P)

Uptake

Prices Basic_i = α_B Vertical Integration Basic_i + α_P Vertical Integration Premium_i + $X_i\delta$

Prices Premium_i = β_B Vertical Integration Basic_i + β_P Vertical Integration Premium_i + $X_i\delta$

Chipty: Regression Analysis – Prices (P)

		Pa	nel A: Price	of Basic Cab	le	Panel B: Price of Premium Cable						
Variable	(1)			(2)				(3)		(4)		
	Coefficient	t-statistic robust	t-statistic OLS	Coefficient	t-statistic robust	t-statistic OLS	Coefficient	t-statistic robust	t-statistic OLS	Coefficient	t-statistic robust	t-statistic OLS
Constant Integration with basic	1.048	0.107	0.186	-2.168	0.226	0.385	7.477	2.073	2.652	7.685	2.154	2.745
services Integration with premium	0.049	0.833	2.538	0.045	0.755	2.310	-0.034	2.002	3.569	-0.034	1.997	3.545
services Natural log of owner's horizontal	-0.385	3.833	2.485	-0.357	3.827	2.294	0.516	9.582	6.670	0.514	9.564	6.653
size	0.139	1.123	3.907	0.142	1.146	3.968	0.067	1.954	3.771	0.067	1.954	3.762
System age Natural log of homes	-0.044	3.316	5.093	-0.530	3.911	6.222	0.011	1.937	2.461	0.011	2.152	2.655
passed Channel	0.467	3.207	8.497	0.547	3.827	10.395	-0.037	0.673	1.224	-0.039	0.776	1.484
capacity Natural log of	0.029	3.675	4.781				-0.002	0.542	0.620			
income Natural log of population	0.867	0.903	1.678	0.982	1.045	1.892	-0.200	0.734	0.774	-0.207	0.765	0.804
density Younger	-0.378	4.010	4.801	-0.353	3.649	4.468	-0.095	1.732	2.421	-0.097	1.782	2.468
viewership	7.616	0.928	1.129	5.402	0.682	0.798	-4.831	1.578	1.434	-4.688	1.567	1.395
viewership Non-white	-8.999	1.650	3.252	-8.674	1.600	3.117	-0.489	0.279	0.354	-0.510	0.288	0.369
viewershin	1 240	1 290	1 753	1 227	1 268	1 725	0.033	0.068	0.094	0.034	0.070	0.096
Household size Natural log of television	2.517	2.211	3.224	-2.279	2.021	2.908	0.381	0.868	0.978	0.366	0.836	0.941
households Area of dominant influence	0.646	2.052	2.694	0.801	2.491	3.354	0.268	1.421	2.236	0.258	1.376	2.172
rank	0.011	1.796	2.400	0.013	2.165	2.949	0.001	0.369	0.617	0.001	0.330	0.550
A.E., A.D.2		0.144			0.144			0.055			0.055	

TABLE 6-EFFECTS OF INTEGRATION ON EQUILIBRIUM PRICES

Chipty: Regression Analysis – Uptake Rates (Q)

Uptake

Uptake $\text{Basic}_i = \alpha_B \text{Vertical Integration Basic}_i + \alpha_P \text{Vertical Integration Premium}_i + X_i \delta$

Uptake Premium_i = β_B Vertical Integration Basic_i + β_P Vertical Integration Premium_i + $X_i\delta$

Chipty: Regression Analysis – Uptake Rates (Q)

		Penetration 1	Panel B: Basic-Only Penetration Rate									
Variable	Coefficient	Robust	WLS	Coefficient	Robust	WLS	Coefficient	Robust	WLS	Coefficient	Robust	WLS
Constant	-1.097	1.456	3.579	-1.114	1.400	3.600	1.398	2.031	5.233	1.415	1.888	5.293
Integration with basic												
services	0.004	1.174	3.307	0.004	1.079	3.226	0.006	3.416	9.922	0.007	3.484	10.835
Integration with												
premium services	0.009	1.397	1.544	0.011	1.415	1.751	0.003	0.391	0.934	0.003	0.419	0.872
Natural log of owner's												
horizontal size	-0.023	2.448	7.236	-0.023	2.397	7.148	-0.022	3.180	11.116	-0.023	3.103	11.376
System age	0.008	5.503	16.570	0.008	6.016	17.837	0.008	9.417	19.371	0.008	9.246	18.780
Channel capacity	-0.002	2.561	5.968				0.001	2.121	4.394			
Natural log of income	0.196	2.751	6.444	0.198	2.684	6.453	-0.108	1.490	5.958	-0.118	1.586	6.305
Natural log of												
population density	-0.023	2.539	5.036	-0.028	3.027	6.042	-0.003	0.460	2.222	-0.001	0.070	1.485
Younger viewership	-0.681	1.056	1.737	-0.675	0.625	1.705	-0.836	0.882	0.799	0.924	0.962	1.098
Older viewership	1.103	3.366	6.984	1.119	3.209	7.027	1.205	3.548	11.717	1.185	3.393	11.466
Non-white viewership	-0.159	1.752	3.777	-0.176	1.839	4.136	-0.189	2.327	6.593	-0.183	2.140	6.379
Household size	0.212	2.027	4.831	0.225	2.019	5.084	0.169	1.345	4.655	0.172	1.339	4.730
Natural log of												
television households	-0.025	1.081	2.365	-0.032	1.413	3.025	-0.021	1.246	0.266	-0.012	0.626	0.636
Area of dominant												
influence rank	-0.001	1.008	2.672	-0.001	1.204	3.115	0.000	0.205	2.927	0.000	0.536	3.739
Adjusted R ²		0.379			0.365			0.497			0.490	

TABLE 7-EFFECTS OF INTEGRATION ON EQUILIBRIUM PENETRATION RATES

Chipty: Regression Analysis – Uptake Rates (Q)

	I	n Penetration	Panel D: Premium-Also Penetration Rate									
Variable	Coefficient	Robust	WLS	Coefficient	Robust	WLS	Coefficient	Robust	WLS	Coefficient	Robust	WLS
Constant	-3.650	3.609	10.471	-3.661	3.614	10.519	-2.079	2.024	6.211	-2.135	1.961	6.364
Integration with basic												
services	-0.010	2.257	8.130	-0.010	2.264	8.131	-0.015	4.709	11.474	-0.015	4.533	11.880
Integration with												
premium services	0.030	2.873	4.804	0.033	2.766	4.784	0.014	1.594	2.102	0.014	1.744	2.097
Natural log of owner's												
horizontal size	0.021	1.463	5.821	0.021	1.463	5.832	0.038	3.383	10.659	0.039	3.311	10.810
System age	-0.001	0.717	1.839	-0.001	0.713	2.005	-0.008	5.620	14.584	-0.008	5.611	14.159
Channel capacity	0.000	0.219	0.621				-0.001	1.343	3.732			
Natural log of income	0.314	3.391	9.381	0.314	3.393	9.378	0.299	2.503	8.650	0.308	2.491	8.867
Natural log of												
population density	0.022	1.398	4.510	0.023	1.352	4.746	0.022	1.977	4.326	0.019	1.608	3.799
Younger viewership	-1.646	1.312	3.384	-1.647	1.308	3.386	0.079	0.046	0.168	0.213	0.124	0.452
Older viewership	0.341	0.756	1.937	0.343	0.746	1.948	-1.975	4.568	11.009	-1.951	4.430	10.844
Non-white viewership	0.357	4.150	7.835	0.358	4.155	7.862	0.318	2.451	7.117	0.312	2.330	6.968
Household size	0.338	2.903	6.287	0.338	2.878	6.283	-0.170	0.755	3.340	-0.173	0.761	3.396
Natural log of												
television households	-0.008	0.213	0.680	-0.006	0.181	0.574	0.007	0.255	0.639	0.002	0.057	0.161
Area of dominant												
influence rank	0.000	0.561	1.574	0.000	0.543	1.503	-0.001	0.769	1.838	-0.001	0.840	2.263
Adjusted R ²		0.336			0.336			0.517			0.513	

Chipty: Conclusions

- Vertical Integration leads to better cable packages.
- Vertical Integration leads to higher prices.
- Net effect on consumers depends on tradeoff between quantities and prices.