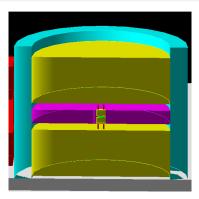
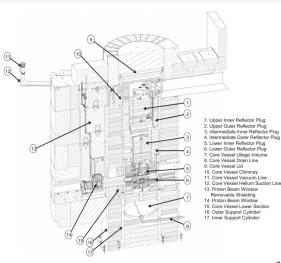

COHERENT Plans for D₂O at the Spallation Neutron Source

Rebecca Rapp Carnegie Mellon University

Thursday, August 1, 2019 APS Division of Particles and Fields



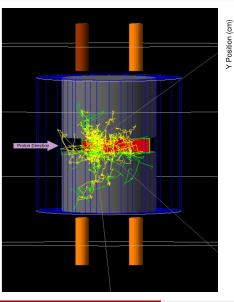
The Spallation Neutron/NEUTRINO Source

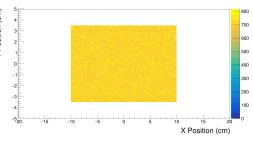


- $\diamond~\pi^+$ decay chain produces u_{μ} , $u_{
 m e}$, and $ar{
 u}_{\mu}$
- $\diamond~\pi^-$ decay chain prevented: mostly captured!
- $\diamond~$ If π^- decay, μ^- decay produces $\bar{\nu}_{\rm e}$

ν production doesn't need the full, complex geometry!

Simplified SNS to study: $\diamond \nu$ production processes $\diamond \nu$ energy and timing





Rebecca Rapp (Carnegie Mellon University)

D2O at the SNS

Generating Events



- ◊ Simulate single, 1 GeV protons
- $\diamond~$ Proton directed along -z
- $\diamond~z=20~{\rm cm}:$ edge of Hg target
- $\diamond\,$ Distributed in xy across Hg target face
- ◊ Use QGSP_BERT physics list
- ♦ Track ν , π , μ , K, Λ , etc.

COHEREN

SNS ν Flux Calculation & Spectra

- ♦ SNS ν primarily have $0 < E_{\nu} < 50$ MeV ♦ "Prompt" and "Delayed" time windows ♦ Convolve timing with 695 ns beam spill ♦ ~0.08 ν per flavor per 1 GeV POT • 4.2 × 10⁷ $\nu/m^2/a$ et 20 m from target
- $\diamond~4.3\times10^7~\nu/{\rm cm^2/s}$ at 20 m from target
- $\diamond~$ Advantages of using SNS $\nu :$
 - $\triangleright \text{ Higher } E_{\nu} \text{ than reactor } \nu$
 - \implies Higher cross section
 - Steady-state rejection!
 - Background: beam-related neutrons

²D. Akimov et al., "COHERENT 2018 at the Spallation Neutron Source", arXiv:1803.09183v2, 2018.

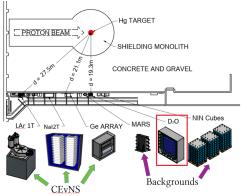
The uncertainty in our calculation

- $\diamond\,$ No data exists for π^{\pm} production from 1 GeV protons on Hg
- ♦ LAHET also implemented Bertini cascade model
- $\diamond\,$ Discrepancies were found between LAHET and world data
- $\diamond~$ Assigned conservative 10% systematic on our calculated SNS ν flux
- ◊ Strategies:
 - ▷ Update comparisons of our simulation to world data
 - ▷ Compare our simulation to LAHET predictions
 - $\triangleright\,$ Contribute to world data: measure SNS ν flux

Improving ν flux uncertainty: Simulation Validation Efforts

- ♦ HARP: measured π^{\pm} production
 - ▷ Proton energies from 3 12 GeV
 - \triangleright Limited π^{\pm} momenta and production angle
 - ▷ Targets listed in righthand table
 - ▷ Comparisons to Geant4.7.1
 - ▷ Normalization between data/sim shown below

Model	Be (3 GeV)		Ta (3 GeV)		Be (5 GeV)		Ta (5 GeV)		Be (8 GeV)		Ta (8 GeV)		Be (12 GeV)		Ta (12 GeV)	
	π^+	π^{-}	π^+	π^{-}	π^+	π^{-}										
Bertini	0.35	1.02	0.45	0.53	0.70	1.12	0.29	0.35	1.22	1.54	0.84	1.08	1.75	1.81	1.27	1.50


³M. Apollonio et al., "Forward production of charged pions with incident protons on nuclear targets at the CERN Proton Synchrotron", Phys. Rev. C 80 (2009).

Rebecca Rapp (Carnegie Mellon University)

D₂O at the SNS

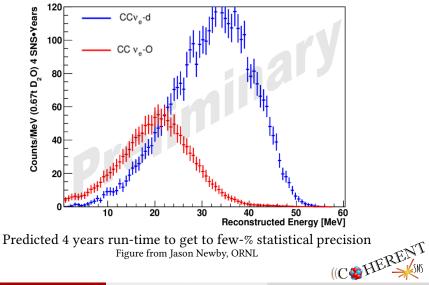
HERE /

Improving ν flux uncertainty: Planned Experiment

The future of Neutrino Alley

- ♦ D₂O detector in Neutrino Alley
- $\diamond~~{
 m Study}~
 u_{
 m e}+d
 ightarrow p+p+e^-$
- ♦ Calculated 2-3% xscn uncertainty
- $\diamond \ \# \nu_{\rm e} \implies \# \mu^+ \implies \# \pi^+$
- $\diamond \ \mathbf{3} \times (\# \, \nu_{\mathrm{e}}) \approx \# \, \nu_{\mathrm{total}}$
- $\diamond~$ Will normalize SNS ν flux!

Plans for D₂O Detector in Neutrino Alley



Mockup from Eric Day, CMU

- \diamond 670-kg D₂O for inner acrylic vessel
- \diamond 10 cm H₂O tail-catcher region
- ♦ 80, 8" biakali PMTs
- $\diamond~$ Mockup of one possible configuration
- $\diamond~$ Available space limits PMT coverage
- ♦ Shielding for beam-related neutrons
- $\diamond\,$ Muon vetos for cosmic backgrounds

Simulated D₂O Energy Reconstruction

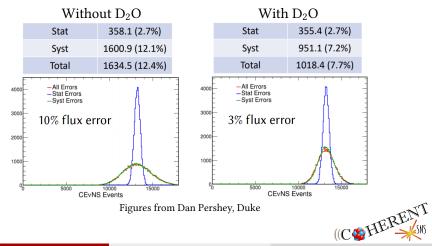
Effects of D₂O on COHERENT Physics Goals

Topic	CsI	Ar	NaI	Ge	Nubes	D_2O
Non-standard neutrino interactions	\checkmark	\checkmark	\checkmark	\checkmark		
Weak mixing angle	\checkmark	\checkmark	\checkmark	\checkmark		
Accelerator-produced dark matter	\checkmark	\checkmark	\checkmark	\checkmark		
Sterile oscillations	\checkmark	\checkmark	\checkmark	\checkmark		
Neutrino magnetic moment		\checkmark	\checkmark	\checkmark		
Nuclear form factors	\checkmark	\checkmark	\checkmark	\checkmark		
Inelastic CC/NC cross-section for supernova		\checkmark			\checkmark	\checkmark
Inelastic CC/NC cross-section for weak physics		\checkmark	\checkmark		\checkmark	\checkmark

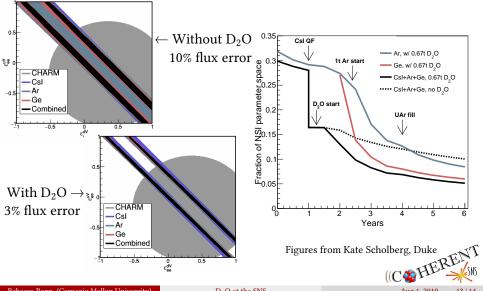
Dominant CsI systematics

Quenching factor	25%
u flux	10%
Nuclear form factor	5%
Analysis acceptance	5%
Total	\pm 28 %

- $\diamond \nu$ flux will soon be dominant uncertainty
- ♦ Uncertainty shared by all detectors!


⁴D. Akimov et al., "Observation of coherent elastic neutrino-nucleus scattering", Science 357 (2017).

Rebecca Rapp (Carnegie Mellon University)


D2O at the SNS

Effects of D₂O on LAr Pseudo-Experiment

Visualization of LAr uncertainties

Effects of D₂O on predicted NSI constraints

Rebecca Rapp (Carnegie Mellon University)

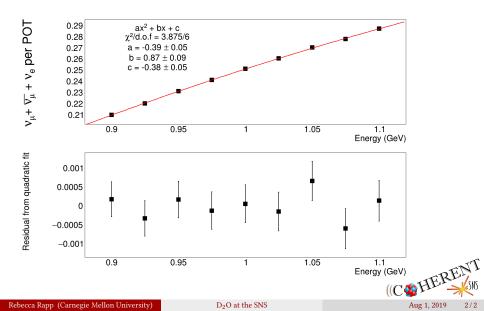
Aug 1, 2019 13/14

Summary

- COHERENT is moving towards precision CEvNS measurements \diamond
- Efforts underway to validate simulation with updated world data \diamond
- No world data for pion production from 1 GeV p + Hg! \diamond
- \diamond To normalize ν flux, plans to deploy a D₂O detector in Neutrino Alley
- $\diamond \nu_{\rm e} + d \rightarrow p + p + e^-$ cross section calculated to 2-3% uncertainty
- D_2O would immediately begin to reduce our flux uncertainty
- \diamond 4 years run-time to achieve few-% uncertainty on the ν flux

Thank You!

Aug 1, 2019


BACKUP SLIDES

Rebecca Rapp (Carnegie Mellon University)

D₂O at the SNS

ν flux depends on the proton energy

