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OUTLINE

- Coherent elastic neutrino-nucleus scattering 

(CEvNS)

- Physics motivations

- How to measure CEvNS

- The COHERENT experiment at the SNS

- COHERENT results

- CsI[Na] measurement and interpretation

- New: LAr engineering run

- Future prospects

- Notes on neutrino magnetic moment,

ES vs CEvNS
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A neutrino smacks a nucleus 

via exchange of a Z, and the 

nucleus recoils as a whole;

coherent up to E
n
~ 50 MeV

Z0

n n

A A

n + A → n + A

Coherent elastic
neutrino-nucleus scattering  (CEvNS)

Nucleon wavefunctions

in the target nucleus

are in phase with each other

at  low momentum transfer

[total xscn]  ~ A2 * [single constituent xscn]For ,
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Image: J. Link Science Perspectives



Fermi constant (SM parameter)
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weak 
nuclear 
charge 

En: neutrino energy

T:  nuclear recoil energy

M: nuclear mass

Q = √ (2 M T):  

momentum transfer

Standard Model prediction 

for differential cross section

(probability of kicking a nucleus 

with recoil energy T)

Form factor: F=1 ➔ full coherence

kinematics:
ping-pong

ball hits

bowling ball
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weak 
nuclear 
charge 

En: neutrino energy

T:  nuclear recoil energy

M: nuclear mass

Q = √ (2 M T):  

momentum transfer

Standard Model prediction 

for differential cross section

(probability of kicking a nucleus 

with recoil energy T)

No. of 

neutrons

No. of 

protons

,

so protons unimportant



Averaged over stopped-p n flux

Line: F(Q)=1

Green: Klein-Nystrand FF w/uccty
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weak 
nuclear 
charge 

En: neutrino energy

T:  nuclear recoil energy

M: nuclear mass

Q = √ (2 M T):  

momentum transfer

Form factor: F=1 ➔ full coherence



In a bit more detail: vector and axial contributions

vector

axial

GV, GA:  SM weak parameters

dominates

small for

most 

nuclei, 

zero for

spin-zero

En: neutrino energy

T:  nuclear recoil energy

M: nuclear mass

Q = √ (2 M T):   momentum transfer
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For the moment,

mostly ignoring 

axial contributions



(per target atom in CsI)
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The cross section
is large  

(by neutrino standards)



Nuclear recoil energy spectrum in Ge for 30 MeV n

Max recoil

energy is ~2E
n
2/M 

(25 keV for Ge)

Large cross section (by neutrino standards) but hard to observe

due to tiny nuclear recoil energies: 

9
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The only

experimental

signature:

deposited energy

➔ WIMP dark matter detectors developed
over the last ~decade are sensitive
to ~ keV to 10’s of keV recoils

tiny energy

deposited

by nuclear

recoils in the 

target material
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Coherent n
Background

7Be
8B

Atmospheric and DSNB

XENON1T
LUX

PandaX
DAMIC

SuperCDMS
Darkside 50

EDELWEISS-III
CRESST-II

The so-called “neutrino floor” (signal!) for DM experiments

Measure CEvNS to understand nature of background/astro signal 

(& detector response, DM interaction) 11

solar n’s

atmospheric 
n’ssuper

nova
n’s

L. Strigari
J. Monroe & P. Fisher, 2007



The cross section is cleanly predicted 

in the Standard Model

vector

axial

GV, GA:  SM weak parameters

dominates

small for

most 

nuclei, 

zero for

spin-zero

En: neutrino energy

T:  nuclear recoil energy

M: nuclear mass

Q = √ (2 M T):   momentum transfer
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The cross section is cleanly predicted 

in the Standard Model

En: neutrino energy

T:  nuclear recoil energy

M: nuclear mass

Q = √ (2 M T):   momentum transfer

F(Q):  nuclear form factor, <~5% uncertainty on event rate 

form factor

suppresses

cross section

at large Q
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Need to measure N2 dependence of the CEvNS xscn

one down...

more to go...

A deviation from a N2 prediction can be

a signature of beyond-the-SM physics

Averaged over stopped-p n flux

Line: F(Q)=1

Green: Klein-Nystrand FF w/uccty
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Why measure CEvNS?

E. Lisi

Neutrino 2018

A few examples...
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• Dark matter direct-detection background

• Well-calculable cross-section in SM: 

• sin2qWeff at low Q

• Probe of BSM physics
• Non-standard interactions of neutrinos

• New NC mediators

• Neutrino magnetic moment

• New tool for sterile neutrino oscillations

• Astrophysical signals (solar & SN) 

• Supernova processes 

• Nuclear physics:
• Neutron form factors

• gA quenching

• Possible applications (reactor monitoring)

CEvNS: what’s it good for? ! (not a

complete list!)



Can improve ~order of magnitude beyond CHARM limits with a
first-generation experiment  (for best sensitivity, want multiple targets)

Non-Standard Interactions of Neutrinos:
new interaction specific to n’s

J. Barranco et al., JHEP 0512 (2005),  K. Scholberg, PRD73, 033005 (2006), 021

17More studies: see https://sites.duke.edu/nueclipse/files/2017/04/Dent-James-NuEclipse-August-2017.pdf

If these e’s are

~unity, there is

a new interaction

of ~Standard-model

size... many not 

currently

well constrained



Signatures of Beyond-the-Standard-Model Physics
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Look for a CEvNS excess or deficit wrt SM expectation

CsI
Ratio 

wrt SM

New ne-d quark interaction

N
e
w

 n
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u
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ra

c
ti
o

n



✓ High flux

✓ Well understood spectrum

✓ Multiple flavors (physics sensitivity)

✓ Pulsed source if possible, for background rejection

✓ Ability to get close

✓ Practical things: access, control, ...

How to detect CEvNS?

What do you want for your n source?

You need a neutrino source

and a detector

19
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Neutrinos from nuclear reactors

• ne-bar produced in fission reactions (one flavor)

• huge fluxes possible: ~2x1020 s-1 per GW

• several CEvNS searches past, current and future at 

reactors, but recoil energies<keV and

backgrounds make this very challenging 

n energies up to 

several MeV



Both cross-section and maximum recoil energy 

increase with neutrino energy:

40Ar target

30 MeV n’s

3 MeV n’s

for same flux

Want energy as large as possible while satisfying

coherence condition:        (<~ 50 MeV for medium A)

21

stopped p

reactor



3-body decay: range of energies
between 0 and m

m
/2

DELAYED (2.2 ms)

2-body decay: monochromatic 29.9 MeV n
m

PROMPT

Stopped-Pion (pDAR) Neutrinos

22

at rest



Stopped-Pion Neutrino Sources Worldwide

SNS

BNB

DAEdALUS

ESS

MLF

ISIS
LANSCE

?
Past

Current

Future

CSNS



better

from duty cycle

Comparison of pion decay-at-rest n sources
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Proton beam energy: 0.9-1.3 GeV

Total power: 0.9-1.4 MW

Pulse duration: 380 ns FWHM

Repetition rate: 60 Hz

Liquid mercury target

Oak Ridge National Laboratory, TN

25
The neutrinos are free!



60 Hz pulsed source

Background rejection factor ~few x 10-4  

Time structure of the SNS source

Prompt nm from p decay in 

time with the proton pulse

Delayed anti-nm, ne

on m decay timescale

26



The SNS has large, extremely clean stopped-pion n flux

Note that contamination

from non p-decay at rest
(decay in flight,

kaon decay, m capture...)

is down by several

orders of magnitude

SNS flux (1.4 MW):

430 x 105 n/cm2/s

@ 20 m

0.08 neutrinos per flavor per proton on target

27
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Wphonons

(heat)

feel a warm pulse

http://dmrc.snu.ac.kr/english/intro/intro1.html

This is just like the tiny thump of a WIMP;

we benefit from the last few decades of  low-energy nuclear recoil detectors

Now, detecting the tiny kick of the neutrino...

2-phase

noble liquid

photons

see a

flash

scintillating crystal

noble liquid

++++-- - -

ionization

feel a zap

HPGe

Cryogenic

Ge, Si

W



The COHERENT collaboration

~90 members,

20 institutions 

4 countries

arXiv:1509.08702

http://sites.duke.edu/coherent

29



COHERENT CEvNS Detectors

Nuclear

Target

Technology Mass

(kg)

Distance 

from 

source

(m)

Recoil 

threshold 

(keVr)

CsI[Na] Scintillating

crystal

14.6 19.3 6.5

Ge HPGe PPC 16 22 <few

LAr Single-phase 22 29 20

NaI[Tl] Scintillating 

crystal

185*/3338 28 13

Multiple detectors for N2 dependence of the cross section

CsI[Na]

30

flash

zap

flash

flash
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LAr NaI
Ge

CsI
NIN 

cubes

Siting for deployment in SNS basement

(measured neutron backgrounds low,

~ 8 mwe overburden)

View looking

down “Neutrino Alley”

Isotropic n glow from Hg SNS target



32

Expected recoil energy distribution

Lighter targets:

less rate per mass,

but kicked to 

higher energy



++++-- - -
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Backgrounds

Usual suspects: • cosmogenics

• ambient and intrinsic radioactivity

• detector-specific noise and dark rate 

Neutrons are especially not our friends*

Steady-state backgrounds can be measured off-beam-pulse 

... in-time backgrounds must be carefully characterized 

*Thanks to Robert Cooper for the “mean neutron”
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The CsI Detector in Shielding in Neutrino Alley at the SNS

A hand-held detector! Almost wrapped up...
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COHERENT data taking

Neutron 

background data-

taking for ~2 years 

before first CEvNS

detectors

CsI data-taking 

starting summer 2015

1.76 x1023 POT 

delivered to CsI

(7.48 GWhr)
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First light at the SNS (stopped-pion neutrinos)

with 14.6-kg CsI[Na] detector

Background-subtracted and

integrated over time

DOI: 10.5281/zenodo.1228631 

D. Akimov et al., Science,  2017

http://science.sciencemag.org/content/early/2017/08/02/science.aao0990

→ measure of the Q spectrum

http://science.sciencemag.org/
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Signal, background, and uncertainty summary numbers

Beam ON coincidence window 547 counts

Anticoincidence window 405 counts

Beam-on bg:  prompt beam neutrons 7.0 ± 1.7

Beam-on bg: NINs (neglected) 4.0 ± 1.3

Signal counts, single-bin counting 136 ± 31

Signal counts, 2D likelihood fit 134 ± 22

Predicted SM signal counts 173 ± 48

Uncertainties on signal and background predictions

Event selection 5%

Flux 10%

Quenching factor 25%

Form factor 5%

Total uncertainty on signal 28%

Beam-on neutron background 25%

6 ≤ PE ≤ 30, 0 ≤ t ≤ 6000 ns 

Dominant

uncertainty
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Best fit: 134 ± 22 

observed events 

SM 

prediction,

173 events

68% C.L.

5s

2s

1s

No CEvNS rejected at 6.7s,

consistent w/SM within 1s

Results of 2D

energy, time fit
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Interpreting the rate in the context of SM parameters

B. Canas et al., arXiv:1608.0267

... our first measurement

does not look very good on

this plot... but...
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Neutrino non-standard interaction 

constraints for current CsI data set:

• Assume

all other e’s

zero

Parameters 

describing 

beyond-the-

SM 

interactions 

outside this 

region 

disfavored at 

90%

*CHARM constraints apply only to heavy mediators

*

See also

Coloma et al.,

arXiv:1708.02899 



41

Global fits to COHERENT

+ oscillation experiments

Solid: COHERENT 

Dashed: COHERENT + osc

Blue: LMA  (q12 < p/4)

Red: LMA-D (q12 > p/4) 

(“dark side”, still allowed with NSI)

1s, 2s allowed

regions projected in 

(eee
uV, emm

uV)

plane

Already

meaningful

constraints!
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Single-Phase Liquid Argon

• ~22 kg fiducial mass

• 2 x Hamamatsu 5912-02-MOD 8” PMTs

• 8” borosilicate glass windown

• 14 dynodes

• QE: 18%@ 400 nm 

• Wavelength shifter: TB-coated teflon walls and PMTs

• Cryomech cryocooler – 90 Wt

• PT90 single-state pulse-tube cold head

Detector from FNAL, previously built (J. Yoo et al.) for CENNS@BNB 
(S. Brice, Phys.Rev. D89 (2014) no.7, 072004)

IU, UT, ORNL
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Matt Heath, APS April meeting
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Matt Heath, APS April meeting
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Matt Heath, APS April meeting
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Another phenomenological

analysis, making use of spectral fit:
arXiv:1708.04255

SM weak charge
Effective weak charge in presence

of light vector mediator Z’ 

• Q2-dependence  ➔ affects recoil spectrum

• 2 parameters: g, MZ’

Dashed: SM

Solid: NSI w/ Mz’= 10 MeV, g=10-4

Blue: nm

Red: nm + nmbar

Black: nm + nmbar + ne

excluded

at 2s

explains g-

2 anomaly
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What’s Next for COHERENT?

One measurement    

so far!  Want to map 

out N2 dependence



CEvNS 48

Neutrino Alley Deployments: current &  near future

CEvNS
CEvNS Neutrino-

induced 

neutrons
Neutron 

backgrounds

neCC on 127I

CEvNS
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Lots more data in the can! 

CEvNS
CEvNS Neutrino-

induced 

neutrons
Neutron 

backgrounds

neCC on 127I

CEvNS



COHERENT CEvNS Detector Status and Farther Future

Nuclear

Target

Technology Mass

(kg)

Distance 

from 

source

(m)

Recoil 

threshold 

(keVr)

Data-taking start 

date

Future

CsI[Na] Scintillating

crystal

14.6 20 6.5 9/2015 Finishing data-

taking

Ge HPGe PPC 16 22 <few 2019

LAr Single-

phase

22 29 20 12/2016, 

upgraded

summer 2017

Expansion to

750 kg scale 

NaI[Tl] Scintillating 

crystal

185*/

3388

28 13 *high-threshold

deployment 

summer 2016

Expansion to

3.3 tonne,  up to 

9 tonnes

50

+ concepts

for other 

targets
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• 750-kg LAr will fit in the same place, will 
reuse part of existing infrastructure

• Could potentially use depleted argon

Tonne-scale LAr Detector

CC/NC inelastic in argon of interest

for supernova neutrinos

CC   ne+
40Ar e- + 40K*

NC nx+
40Ar nx + 40Ar*
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High-Purity Germanium Detectors

• 8 Canberra/Mirion 2 kg detectors

in multi-port dewar

• Compact poly+Cu+Pb shield

• Muon veto

• Designed to enable additional detectors

P-type Point Contact
• Excellent low-energy resolution

• Well-measured quenching factor

• Reasonable timing
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Sodium Iodide (NaI[Tl]) Detectors (NaIvE)

• up to 9 tons available, 

2 tons in hand

• QF measured

• require PMT base

refurbishment

(dual gain) to 

enable low threshold

for CEvNS on Na

measurement

• development and 

instrumentation tests

underway at UW, Duke 

In the meantime: 185 kg deployed at SNS to go after neCC on 127I

Multi-ton concept

J.A. Formaggio and G. Zeller,  RMP 84 (2012) 1307-1341
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Estimated future sensitivities for NSI

Combination

of targets

improves

sensitivity



Neutrino magnetic moment

Signature is distortion at low recoil energy E

➔ very low

energy threshold

is desirable (i.e., Ge )

55

Note muon flavor

content @ 

stopped-p source
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CEvNS vs n-e Elastic Scattering

• CEvNS xscn larger by Z2 than ES

• But Z more electrons per target for ES, so xscn ~Z bigger

• CEvNS magnetic scattering has higher rate, but more SM bg

mn in mB
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@20 m

quite hard @ SNS...
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Uncertainties on signal and background predictions

Event selection 5%

Quenching factor 25%

Flux 10%

Form factor 5%

Total uncertainty on signal 28%

Beam-on neutron background 25%

Dominant 

uncertainty
(detector-

dependent)

2017 CsI measurement

Next 

largest 

uncertainty
(affects all

detectors)• ancillary quenching factor measurements 

are important for the physics program

• D2O for flux normalization also planned

Reducing systematic uncertainties
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Heavy water detector in Neutrino Alley

➔ ~few percent precision on flux normalization



Summary
• CEvNS: 

• large cross section, but tiny recoils, a N2

• accessible w/low-energy threshold detectors, plus extra

oomph of stopped-pion neutrino source

• First measurement by COHERENT CsI[Na] at the SNS

• Meaningful bounds on beyond-the-SM physics

• It’s just the beginning....

• Multiple targets, upgrades and new ideas in the works!

• Other CEvNS experiments at reactors are joining the fun
(CONUS, CONNIE, MINER, RED, Ricochet, Nu-cleus...)

60



Phys.Rev. D94 (2016) no.5, 055005, 

Erratum: Phys.Rev. D95 (2017) no.7, 079903

P. Coloma et al., JHEP 1704 (2017) 116

If you allow for NSI,

an ambiguity

exists in determining

mass ordering 

w/ LBL experiments: 

“LMA-Dark”

Normal 

ordering 

w/no 

NSI...

...looks 

just like 

inverted 

ordering 

w/NSI

61

Same answer for



Phys.Rev. D94 (2016) no.5, 055005, 

Erratum: Phys.Rev. D95 (2017) no.7, 079903

P. Coloma et al., JHEP 1704 (2017) 116

Normal 

ordering 

w/no 

NSI...

62

CEvNS measurements

can place significant

constraints

to resolve the  

LMA-D ambiguity

if SM rate is measured

OR, could confirm

an NSI signature

observed by DUNE

...looks 

just like 

inverted 

ordering 

w/NSI
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CsI quenching factor measurements at TUNL w/ neutrons

Discrepancy between two 
measurements used to 

estimate systematic 
uncertainty

Flat 8.78%

13.348 pe/keVee * 0.0878 keVee/keVr = 1.2 pe/keVr

QF ee light yield 

22 cm3 crystal

from same 

manufacturer



!!!!Assumptions:

Another example:  sterile neutrino oscillations

• CEvNS is NC and doesn’t care about the flavor;

disappearance is “true” disappearance

• Some neutrino spectral info in the recoil spectrum

• Can cancel some systematics with multiple identical, or movable detectors

Even 100 kg of Ge is expensive/challenging, but multitons of 

noble liquid is entirely thinkable

Kosmas et al., Phys.Rev. D96 (2017) no.6, 063013
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Projections: Kosmas et al., 

arXiv:1505.03202,

1711.09773



Some experimental issues to keep in mind

- Efficiency is a function of T, and has shape uncertainties

- Low energy thresholds are hard to achieve

- “Quenching factor” (observable recoil energy compared to electron 

energy deposition) and other detector response has T shape 

uncertainties

- T shape uncertainties  

have correlations

- Energy resolution matters

- Backgrounds matter (a lot)

- There are flux normalization

and shape uncertainties* 

- All of these are very target-

and detector-dependent

- It’s very hard work to get a handle 

on these parameters

and their (correlated) 

uncertainties 

66*Little flux shape uncertainty at SNS
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Now, zoom in on the form factor(s)

En: neutrino energy

T:  nuclear recoil energy

M: nuclear mass

Q = √ (2 M T):   momentum transfer

form factor

suppresses

cross section

at large Q

- Fourier transform of the nucleon distributions

- encapsulates information about non-point-like-ness  of the nucleus

larger effect

for stopped-p, SN, atmn

than solar, reactor
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One should write separate

Fn
V(Q), Fn

A(Q), Fp
V(Q), Fp

A(Q) form factors 

Currently, assuming these are all the same,

except for extra neutron skin for Fn
V(Q)

- axial contributions are pretty tiny

- proton contributions also quite unimportant
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“Helm”

Three form-factor functional forms studied in detail for COHERENT:

“Klein-Nystrand”

“Horowitz”

Numerical files from Chuck Horowitz,

“based on relativistic mean field interaction FSUgold

that does a good job reproducing the binding

energy and charge radii of many nuclei”

also looked at: “solid sphere”, Lewin-Smith;

did not look at “symmetrized Fermi function”

Neutron skin adjustment
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Different parameterizations give very similar shapes

Cs133
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Effect of the form factor on the flux-averaged xscns

Averaged over stopped-p n flux

Line: F(Q)=1

Green: Klein-Nystrand FF w/uncertainty*

*will come back to this
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Effect of the form factor on the recoil spectra
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Approaching the form factor as 

something to measure using CEvNS…

assume the SM is true,  learn about the nucleus
(and astrophysics!)

Observable is 

recoil

spectrum

shape



+: model

predictions

Example:

tonne-scale 

experiment

at pDAR source 10% uncertainty 

on rate

Ar-C scattering

74

Approach: expand in moments of the neutron radius

K. Patton et al., PRC86  (2012) 024612
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Lines: 2 tonnes @ 20 m

More studies with this approach

Uses uncertainties uncorrelated bin by bin,

which is probably too conservative

4th moment
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• Fit to neutron radius resulting in ~18% uncertainty, as

well as neutron skin measurement

• Does not handle bin-by-bin correlation of systematics (e.g., from QF)

First fit to the COHERENT CsI data

Helm functional form

COHERENT will have better measurement soon,

+ handling of shape systematics w/ correlations
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But now:  suppose your physics goal is to 
• hunt for BSM effects in the recoil spectrum

• understand an astrophysical CEvNS signal

• understand an astrophysical CEvNS background

(DM floor)

then…  uncertainties in the form factor are a nuisance!

There are degeneracies in the observables between 

“old” (but still mysterious) physics

and “new” physics 

We will need to think carefully about how to

disentangle these effects and understand uncertainties
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Initial COHERENT CsI result used Klein-Nystrand (no skin)

• assumed +/-5% FF uncertainty on counts or 1-bin NSI analysis

• conservative estimate based on variation of

integrated counts for different parameterizations

• not the dominant uncertainty (which is QF-related, +/-25%)

Updated estimates of integrated event rates 

w/FF variation are within this uncertainty 
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Current method of estimating FF uncertainty:

Rn scaling (via Q) by ±3% (C. Horowitz’s estimate of Rn uccty)

➔ ~4% effect on CsI number

CsI events

Horowitz 171.72

Horowitz Rn+3% 164.89

Horowitz Rn-3% 178.64

The previously

estimated ~5% uccty

on CsI number from FF

is probably reasonable
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Effect of FF uncertainty on the SNS recoil spectrum 

(Klein-Nystrand FF)
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New:

Helm form factor with Rn varied ~+/-9%
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May make significant impact on BSM sensitivity:

• But is +/-0.5 fm on Rn the right amount of uncertainty?

• Is varying Rn even the right thing to do? 

• How to incorporate known nuclear structure physics?


