## **Coherent Elastic Neutrino-Nucleus Scattering**



Kate Scholberg, Duke University, TAUP 2019, Toyama September 13, 2019

## Coherent elastic neutrino-nucleus scattering (CEvNS)

$$\nu + A \rightarrow \nu + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to  $E_v \sim 50$  MeV





## Coherent elastic neutrino-nucleus scattering (CEvNS)

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to  $E_v \sim 50$  MeV





Nucleon wavefunctions in the target nucleus are **in phase with each other** at low momentum transfer

For  $QR \ll 1$ , [total xscn] ~  $A^2$  \* [single constituent xscn]

A: no. of constituents



## Large cross section (by neutrino standards) but hard to observe due to tiny nuclear recoil energies:



## **CEvNS:** what's it good for?

CEvNS as a **signal** for signatures of *new physics* 

CEvNS as a **signal** for understanding of "old" physics

CEvNS as a **background** for signatures of new physics

CEvNS as a **signal** for *astrophysics* 

CEvNS as a practical tool



)So Many Things

(not a complete list!)









## **CEvNS:** what's it good for?

CEvNS as a **signal** for signatures of *new physics* 

CEvNS as a **signal** for understanding of "old" physics

CEvNS as a **background** for signatures of new physics

CEvNS as a **signal** for *astrophysics* 

CEvNS as a practical tool



D So
 → Many
 → Things

(not a complete list!)









### The cross section is cleanly predicted in the Standard Model

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{\pi} F^2(Q) \left[ (G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - \frac{T}{E_\nu}\right)^2 - (G_V^2 - G_A^2) \frac{MT}{E_\nu^2} \right]$$
  
E<sub>v</sub>: neutrino energy  
T: nuclear recoil energy  
M: nuclear mass  
Q =  $\sqrt{(2 \text{ M T})}$ : momentum transfer

## $G_V, G_A$ : SM weak parameters

 $g_A^n = -0.5121.$ 

vector 
$$G_V = g_V^p Z + g_V^n N$$
,   
axial  $G_A = g_A^p (Z_+ - Z_-) + g_A^n (N_+ - N_-)$    
 $\begin{cases} g_V^p = 0.0298 \\ g_V^n = -0.5117 \\ g_A^p = 0.4955 \end{cases}$  small for most nuclei, zero for spin-zero

### The cross section is cleanly predicted in the Standard Model

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{\pi} F^2(Q) \left[ (G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - \frac{T}{E_\nu}\right)^2 - (G_V^2 - G_A^2) \frac{MT}{E_\nu^2} \right]$$
  
E<sub>v</sub>: neutrino energy  
T: nuclear recoil energy  
M: nuclear mass  
Q =  $\sqrt{(2 \text{ M T})}$ : momentum transfer

#### *F(Q)*: nuclear **form factor**, <~5% uncertainty on event rate



### Need to measure N<sup>2</sup> dependence of the CEvNS xscn



## **Non-Standard Interactions of Neutrinos:**

#### new interaction **specific to** v's Look for a CEvNS **excess** or **deficit** wrt SM expectation



**Example models:** Barranco et al. JHEP 0512 & references therein: extra neutral gauge bosons, leptoquarks, R-parity-breaking interactions More studies: see https://sites.duke.edu/nueclipse/files/2017/04/Dent-James-NuEclipse-August-2017.pdf

## Other new physics results in a *distortion of the recoil spectrum* (Q dependence)

## **BSM Light Mediators**

SM weak charge

Effective weak charge in presence of light vector mediator Z'

specific to neutrinos and quarks

e.g. arXiv:1708.04255

## Neutrino (Anomalous) Magnetic Moment

e.g. arXiv:1505.03202, 1711.09773

 $\left(\frac{d\sigma}{dT}\right)_m = \frac{\pi \alpha^2 \mu_\nu^2 Z^2}{m_e^2} \left(\frac{1 - T/E_\nu}{T} + \frac{T}{4E_\nu^2}\right) \quad \begin{array}{l} \text{Specific ~1/T upturn} \\ \text{at low recoil energy} \end{array}$ 

## **Sterile Neutrino Oscillations**

$$P_{\nu_{\alpha} \to \nu_{\alpha}}^{\rm SBL}(E_{\nu}) = 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$$

"True" disappearance with baseline-dependent Q distortion

e.g. arXiv: 1511.02834, 1711.09773, 1901.08094

## **CEvNS:** what's it good for?

CEvNS as a **signal** for signatures of *new physics* 

CEvNS as a **signal** for understanding of "old" physics

CEvNS as a **background** for signatures of new physics (DM)

CEvNS as a signal for astrophysics

CEvNS as a practical tool





(not a complete list!)









#### The so-called "neutrino floor" (signal!) for direct DM experiments



## How to measure CEvNS

The only experimental signature:

tiny energy deposited by nuclear recoils in the target material



Adetectors developed over the last ~few decades are sensitive to ~ keV to 10's of keV recoils

## Low-energy nuclear recoil detection strategies



Maximum recoil energy as a function of  $E_{v}$ 



#### Maximum recoil energy as a function of $E_{\nu}$



Maximum recoil energy as a function of  $E_{\nu}$ 



#### Maximum recoil energy as a function of $E_{\nu}$



## Both cross-section and maximum recoil energy increase with neutrino energy:



coherence condition:  $Q \lesssim \frac{1}{R}$  (<~ 50 MeV for medium A)

## **Stopped-Pion (**π**DAR)** Neutrinos



22

### **Stopped-Pion Neutrino Sources Worldwide**











## **Spallation Neutron Source**

Oak Ridge National Laboratory, TN



Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

## The neutrinos are free!







| Nuclear<br>Target | Technology            |       | Mass<br>(kg) | Distance<br>from<br>source<br>(m) | Recoil<br>threshold<br>(keVr) |
|-------------------|-----------------------|-------|--------------|-----------------------------------|-------------------------------|
| Csl[Na]           | Scintillating crystal | flash | 14.6         | 19.3                              | 6.5                           |
| Ge                | HPGe PPC              | zap   | 16           | 20                                | <few< th=""></few<>           |
| LAr               | Single-phase          | flash | 22           | 29                                | 20                            |
| Nal[TI]           | Scintillating crystal | flash | 185*/3338    | 28                                | 13                            |

#### Multiple detectors for N<sup>2</sup> dependence of the cross section











# **First light** at the SNS (stopped-pion neutrinos) with 14.6-kg CsI[Na] detector



D. Akimov et al., *Science*, 2017 http://science.sciencemag.org/content/early/2017/08/02/science.aao0990

## Neutrino non-standard interaction constraints for current CsI data set:



\*CHARM constraints apply only to heavy mediators

### What's Next for COHERENT?



62

One measurement so far! Want to map out N<sup>2</sup> dependence

## COHERENT LAr Engineering Run Result (COHERENT LAR Engineering Run Result





- Results from more Csl running, improved QF & analysis
- Results from 22-kg LAr detector
- Treatment of shape systematics
- Accelerator-produced DM sensitivity

## COHERENT CEvNS Detector Status and Farther Future

| Nuclear<br>Target | Technology               | Mass<br>(kg)  | Distance<br>from<br>source<br>(m) | Recoil<br>threshold<br>(keVr)                                               | Data-taking start<br>date                    | Future                                               |
|-------------------|--------------------------|---------------|-----------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| Csl[Na]           | Scintillating<br>crystal | 14.6          | 20                                | 6.5                                                                         | 9/2015                                       | Decommissioned                                       |
| Ge                | HPGe PPC                 | 16            | 20                                | <few< th=""><th>2020</th><th>Funded by NSF<br/>MRI, in progress</th></few<> | 2020                                         | Funded by NSF<br>MRI, in progress                    |
| LAr               | Single-<br>phase         | 22            | 20                                | 20                                                                          | 12/2016,<br>upgraded<br>summer 2017          | Expansion to<br><b>750 kg scale</b>                  |
| Nal[TI]           | Scintillating<br>crystal | 185*/<br>3388 | 28                                | 13                                                                          | *high-threshold<br>deployment<br>summer 2016 | Expansion to<br><b>3.3 tonne</b> , up to<br>9 tonnes |







+D<sub>2</sub>O for flux normalization

+ concepts for other targets...

## Coherent Captain Mills @ Lujan: single-phase LAr



Primary focus on sterile neutrinos (see D. Caratelli plenary talk)

### **Neutrinos from nuclear reactors**



- $v_e$ -bar produced in fission reactions (one flavor)
- huge fluxes possible: ~2x10<sup>20</sup> s<sup>-1</sup> per GW
- several CEvNS searches past, current and future at reactors, but recoil energies<keV and backgrounds make this very challenging

## **Reactor CEvNS Efforts Worldwide**

| Experiment                                         | Technology                                                                           | Location |                             |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------|----------|-----------------------------|--|--|
| CONNIE                                             | Si CCDs                                                                              | Brazil   |                             |  |  |
| CONUS                                              | HPGe                                                                                 | Germany  |                             |  |  |
| Talk by M. Lindner, Neutrino #21                   |                                                                                      |          |                             |  |  |
| MINER                                              | Ge/Si cryogenic                                                                      | USA      |                             |  |  |
| <b>NuCleus</b><br>Talk by R. Strauss, Neutrino #21 | Cryogenic CaWO <sub>4</sub> ,<br>Al <sub>2</sub> O <sub>3</sub> calorimeter<br>array | Europe   |                             |  |  |
| √GEN                                               | Ge PPC                                                                               | Russia   |                             |  |  |
| RED-100                                            | LXe dual phase                                                                       | Russia   |                             |  |  |
| Ricochet                                           | Ge, Zn bolometers                                                                    | France   |                             |  |  |
| TEXONO                                             | p-PCGe                                                                               | Taiwan   | Cel(TI)<br>Na(TI)<br>Na(TI) |  |  |
| Talk by V. Sharma , Neutrino #21                   |                                                                                      |          |                             |  |  |

Many novel low-background, low-threshold technologies

See H. Wong, Nu2018 talk for a more detailed survey

## CONUS



- Brokdorf 3.9 GW reactor
- 17 m from core
- 4 kg Ge PPC
- ~300 eV threshold





Eur. Phys. J. C (2019) 79: 699



## **NUCLEUS** "gram-scale cryogenic calorimeters"



## **CEvNS:** what's it good for?

CEvNS as a **signal** for signatures of *new physics* 

CEvNS as a **signal** for understanding of "old" physics

CEvNS as a **background** for signatures of new physics (DM)

CEvNS as a signal for astrophysics

CEvNS as a practical tool



(not a complete list!)









#### Natural neutrino fluxes



**40** 

### Natural neutrino fluxes



41

#### The so-called "neutrino floor" for DM experiments



#### Think of a SN burst as "the v floor coming up to meet you"



#### Supernova neutrinos in tonne-scale DM detectors



## Detector example: XENON/LZ/DARWIN

dual-phase xenon time projection chambers



Lang et al.(2016). Physical Review D, 94(10), 103009. http://doi.org/10.1103/PhysRevD.94.103009

## Summary

- CEvNS:
  - large cross section, but tiny recoils,  $\alpha$  N<sup>2</sup>
  - accessible w/low-energy threshold detectors, plus extra oomph of stopped-pion neutrino source
- First measurement by COHERENT Csl[Na] at the SNS
- Meaningful bounds on beyond-the-SM physics



- It's just the beginning.... LAr + more Csl soon
- Multiple targets, upgrades and new ideas in the works!
- Other CEvNS experiments are joining the fun! (CCM, TEXONO, CONUS, CONNIE, MINER, RED, Ricochet, NUCLEUS...)

#### Magnificent CEvNS 2019

9-11 November 2019 The PIT America/New\_York timezone



#### Overview

Travel and accomodations

**Call for Abstracts** 

Timetable

**Book of Abstracts** 

Registration

Participant List

Remote participation

The second iteration of the Magnificent CEvNS workshop, focused on the process of coherent elastic neutrino-nucleus scattering (CEvNS).

Proposed in 1974, but unobserved until 2017, the physics accessible with CEvNS is broad. The goal of Magnificent CEvNS is to bring together a broad community of researchers working either directly or peripherally on CEvNS to foster enriching discussions to help direct the field as it continues to grow, forming and strengthening connections between experimentalists and theorists/phenomenologists.

Magnificent CEvNS 2019 is supported by generous contributions from The CoSMS Institute and Triangle Universities Nuclear Laboratory.

Starts 9 Nov 2019, 08:30 Ends 11 Nov 2019, 17:00 America/New\_York

Grayson Rich Kate Scholberg Louis Strigari Matthew Green phil barbeau



The PIT

462 W Franklin St Chapel Hill, NC 27516 USA