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A neutrino smacks a nucleus 
via exchange of a Z, and the 
nucleus recoils as a whole;
coherent up to En~ 50 MeV
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A neutrino smacks a nucleus 
via exchange of a Z, and the 
nucleus recoils as a whole;
coherent up to En~ 50 MeV

Z0

n n

A A

n + A ® n + A

Coherent elastic
neutrino-nucleus scattering  (CEvNS)

Nucleon wavefunctions
in the target nucleus

are in phase with each other
at  low momentum transfer

[total xscn]  ~ A2 * [single constituent xscn]QR << 1For ,
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Image: J. Link Science Perspectives A: no. of constituents



(per target atom in CsI)
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The cross section
is large  

(by neutrino standards)



Nuclear recoil energy spectrum in Ge for 30 MeV n

Max recoil
energy is ~2En

2/M 
(25 keV for Ge)

Large cross section (by neutrino standards) but hard to observe
due to tiny nuclear recoil energies: 
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CEvNS: what’s it good for? ! (not a
complete list!)

CEvNS as a signal
for signatures of new physics

CEvNS as a signal
for understanding of “old” physics

CEvNS as a background
for signatures of new physics

CEvNS as a signal for astrophysics

CEvNS as a practical tool
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The cross section is cleanly predicted 
in the Standard Model

vector

axial

GV, GA:  SM weak parameters
dominates
small for
most 

nuclei, 
zero for
spin-zero

En: neutrino energy
T:  nuclear recoil energy
M: nuclear mass
Q = √ (2 M T):   momentum transfer
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The cross section is cleanly predicted 
in the Standard Model

En: neutrino energy
T:  nuclear recoil energy
M: nuclear mass
Q = √ (2 M T):   momentum transfer

F(Q):  nuclear form factor, <~5% uncertainty on event rate 

form factor
suppresses
cross section
at large Q
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Need to measure N2 dependence of the CEvNS xscn

one down...

more to go...

A deviation from a N2 prediction can be
a signature of beyond-the-SM physics

Averaged over stopped-p n flux

Line: F(Q)=1
Green: Klein-Nystrand FF w/uccty



Non-Standard Interactions of Neutrinos:
new interaction specific to n’s

LNSI
⇤H = �GF⇤
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If these e’s are
~unity, there is
a new interaction
of ~Standard-model
size... many not 
currently
well constrained

Look for a CEvNS excess or deficit wrt SM expectation

Match SM rate

Suppression

Excess

Excess

Match SM rate

CsI Ratio 
wrt SM

New ne-d quark interaction
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For heavy mediators,
expect overall scaling
of CEvNS event rate, 
depending on N, Z

Example models: Barranco et al. JHEP 0512 & references therein: extra neutral gauge
bosons, leptoquarks, R-parity-breaking interactions 

More studies: see https://sites.duke.edu/nueclipse/files/2017/04/Dent-James-NuEclipse-August-2017.pdf
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e.g. arXiv:1708.04255

Other new physics results in a 
distortion of the recoil spectrum (Q dependence)  

specific to neutrinos
and quarks

BSM Light Mediators
SM weak charge

Effective weak charge in presence
of light vector mediator Z’ 

Neutrino (Anomalous) Magnetic Moment
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Specific ~1/T upturn 
at low recoil energy

Sterile Neutrino Oscillations

“True” disappearance with baseline-dependent Q distortion

e.g. arXiv:1505.03202,
1711.09773

e.g. arXiv: 1511.02834, 
1711.09773, 1901.08094 
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CEvNS: what’s it good for? ! (not a
complete list!)

CEvNS as a signal
for signatures of new physics

CEvNS as a signal
for understanding of “old” physics

CEvNS as a background 
for signatures of new physics (DM)

CEvNS as a signal for astrophysics

CEvNS as a practical tool
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Coherent ν
Background

7Be
8B

Atmospheric and DSNB

XENON1T
LUX

PandaX
DAMIC

SuperCDMS
Darkside 50

EDELWEISS-III
CRESST-II

The so-called “neutrino floor” (signal!) for direct DM experiments
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solar n’s

atmospheric 
n’ssuper

nova
n’s

L. Strigari
J. Monroe & P. Fisher, 2007
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The only
experimental
signature:

deposited energy

èdetectors developed over the last ~few decades 
are sensitive to ~ keV to 10’s of keV recoils

tiny energy
deposited
by nuclear
recoils in the 
target material

How to measure CEvNS
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Wphonons
(heat)

feel a warm pulse

http://dmrc.snu.ac.kr/english/intro/intro1.html

Low-energy nuclear recoil detection strategies

2-phase
noble liquid

photons

see a
flash

scintillating crystal
noble liquid

++++-- - -

ionization
feel a zap

HPGe

Cryogenic
Ge, Si

W
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Stopped-pion:
SNS @ 20m 

En (MeV)

N
eu

tri
no

s/
cm

2 /s
/M

eV GW reactor 
ne bar@20 m

5 MCi 51-Cr 
ne @ 25 cm 

40Ar target

Tmax ⇠ 2E2
⌫

M

Same as previous plot, linear x scale

Maximum recoil energy as a function of En
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Stopped-pion:
SNS @ 20m 
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M

Same as previous plot, linear x scale

Maximum recoil energy as a function of En

“conventional”
WIMP detectors
(scint, noble liquid...)
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Stopped-pion:
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Stopped-pion:
SNS @ 20m 
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⌫
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Same as previous plot, linear x scale

Maximum recoil energy as a function of En

“conventional”

WIMP detectors

(scint, noble liquid...)

“existing low-threshold”

(GePPC, bolometers...)

need ~novel technology... 



Both cross-section and maximum recoil energy 
increase with neutrino energy:

40Ar target

30 MeV n’s

3 MeV n’s

for same flux

Want energy as large as possible while satisfying
coherence condition:        (<~ 50 MeV for medium A)
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stopped p

reactor

Tmax ⇠ 2E2
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3-body decay: range of energies
between 0 and mµ/2
DELAYED (2.2 µs)

2-body decay: monochromatic 29.9 MeV nµ
PROMPT

Stopped-Pion (pDAR) Neutrinos

⇥+ � µ+ + �µ

µ+ � e+ + �̄µ + �e
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at rest



Stopped-Pion Neutrino Sources Worldwide

SNS
FTS/
STS

BNB

DAEdALUS

ESS
MLF

ISIS
LANSCE/
Lujan

?Past
Current
Future

CSNS
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better

from duty
cycle

Comparison of pion decay-at-rest n sources

/ ⌫ flux
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better

from duty
cycle

Comparison of pion decay-at-rest n sources

/ ⌫ flux



Proton beam energy: 0.9-1.3 GeV
Total power: 0.9-1.4 MW
Pulse duration: 380 ns FWHM
Repetition rate: 60 Hz
Liquid mercury target

Oak Ridge National Laboratory, TN

26
The neutrinos are free!



COHERENT CEvNS Detectors
Nuclear
Target

Technology Mass
(kg)

Distance 
from 

source
(m)

Recoil 
threshold 

(keVr)

CsI[Na] Scintillating
crystal

14.6 19.3 6.5

Ge HPGe PPC 16 20 <few

LAr Single-phase 22 29 20

NaI[Tl] Scintillating 
crystal

185*/3338 28 13

Multiple detectors for N2 dependence of the cross section

CsI[Na]

27

flash

zap

flash

flash
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LAr NaI Ge
CsI

NIN 
cubes

Siting for deployment in SNS basement
(measured neutron backgrounds low,

~ 8 mwe overburden)

View looking
down “Neutrino Alley”

Isotropic n glow from Hg SNS target
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First light at the SNS (stopped-pion neutrinos)

with 14.6-kg CsI[Na] detector

Background-subtracted and

integrated over time

DOI: 10.5281/zenodo.1228631 

D. Akimov et al., Science,  2017

http://science.sciencemag.org/content/early/2017/08/02/science.aao0990

PE / T / Q2

→ measure of the Q spectrum

http://science.sciencemag.org/
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Neutrino non-standard interaction 
constraints for current CsI data set:

• Assume
all other e’s
zero

Parameters 
describing 

beyond-the-
SM 

interactions 
outside this 

region 
disfavored at 

90%

*CHARM constraints apply only to heavy mediators

*

See also
Coloma et al.,
arXiv:1708.02899,
many more!
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What’s Next for COHERENT?

One measurement    
so far!  Want to map 
out N2 dependence
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Matt Heath, Indiana U., thesis
APS April meeting
Just posted on arXiv

- Results from more CsI running, improved QF & analysis
- Results from 22-kg LAr detector 
- Treatment of shape systematics
- Accelerator-produced DM sensitivity

COHERENT LAr Engineering Run Result

sflux-avg

delayed
window

measure 1 � 4 (stat), expect <1



COHERENT CEvNS Detector Status and Farther Future

Nuclear
Target

Technology Mass
(kg)

Distance 
from 

source
(m)

Recoil 
threshold 

(keVr)

Data-taking start 
date

Future

CsI[Na] Scintillating
crystal

14.6 20 6.5 9/2015 Decommissioned

Ge HPGe PPC 16 20 <few 2020 Funded by NSF 
MRI, in progress

LAr Single-
phase

22 20 20 12/2016, 
upgraded
summer 2017

Expansion to
750 kg scale 

NaI[Tl] Scintillating 
crystal

185*/
3388

28 13 *high-threshold
deployment 
summer 2016

Expansion to
3.3 tonne,  up to 
9 tonnes

33

+D2O for flux 
normalization

+ concepts
for other 
targets...
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Coherent Captain Mills @ Lujan: single-phase LAr

Primary focus on sterile neutrinos (see D. Caratelli plenary talk)
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Neutrinos from nuclear reactors

• ne-bar produced in fission reactions (one flavor)
• huge fluxes possible: ~2x1020 s-1 per GW
• several CEvNS searches past, current and future at 

reactors, but recoil energies<keV and
backgrounds make this very challenging 

n energies up to 
several MeV
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Reactor CEvNS Efforts Worldwide
Experiment Technology Location

CONNIE Si CCDs Brazil

CONUS HPGe Germany

MINER Ge/Si cryogenic USA

NuCleus Cryogenic  CaWO4 , 
Al2O3 calorimeter 

array 

Europe

nGEN Ge PPC Russia

RED-100 LXe dual phase Russia

Ricochet Ge, Zn bolometers France

TEXONO p-PCGe Taiwan

Many novel low-background, low-threshold technologies
See H. Wong, Nu2018 talk for a more detailed survey

Talk by V.  Sharma , Neutrino #21

Talk by R. Strauss, Neutrino #21

Talk by M. Lindner, Neutrino #21
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CONUS
- Brokdorf 3.9 GW reactor
- 17 m from core
- 4 kg Ge PPC
- ~300 eV

threshold

W. Maneschg, Nu2018 Talk by M. Lindner, Neutrino #21
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NUCLEUS

Talk by R. Strauss, Neutrino #21

“gram-scale cryogenic calorimeters”
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CEvNS: what’s it good for? ! (not a
complete list!)

CEvNS as a signal
for signatures of new physics

CEvNS as a signal
for understanding of “old” physics

CEvNS as a background 
for signatures of new physics (DM)

CEvNS as a signal for astrophysics

CEvNS as a practical tool
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Natural neutrino fluxes
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(GePPC, bolometers...)



100 10+1 10+2 10+3 10+4

Mass [GeV/c2]

10-50

10-48

10-46

10-44

10-42

10-40

10-38

10-36

C
ro

ss
 s

ec
tio

n 
[c

m
2 ] (

no
rm

al
is

ed
 to

 n
uc

le
on

)

100 10+1 10+2 10+3 10+4

Mass [GeV/c2]

10-50

10-48

10-46

10-44

10-42

10-40

10-38

10-36

C
ro

ss
 s

ec
tio

n 
[c

m
2 ] (

no
rm

al
is

ed
 to

 n
uc

le
on

)

Coherent ν
Background

7Be
8B

Atmospheric and DSNB

XENON1T
LUX

PandaX
DAMIC

SuperCDMS
Darkside 50

EDELWEISS-III
CRESST-II

The so-called “neutrino floor” for DM experiments
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solar n’s

atmospheric 
n’sdiffuse 

bg SN
n’s

L. Strigari

SN burst flux @ 10 kpc is 
9-10 orders of magnitude 
greater than DSNB flux
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Think of a SN burst as “the n floor coming up to meet you”
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L. Strigari



Supernova neutrinos in tonne-scale DM detectors 

~ handful of events per tonne

@ 10 kpc:  sensitive to

all flavor components of the flux

10 kpc

L=1052 erg/s per flavor*10 s

Eavg = (10,14,15) MeV

a = (3,3,2.5) for
(ne, ne-bar, nx)
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Detector example:  XENON/LZ/DARWIN

Lang et al.(2016). Physical Review D, 94(10), 103009. http://doi.org/10.1103/PhysRevD.94.103009 

• dual-phase xenon time projection chambers



Summary
• CEvNS: 

• large cross section, but tiny recoils, a N2

• accessible w/low-energy threshold detectors, plus extra
oomph of stopped-pion neutrino source

• First measurement by COHERENT CsI[Na] at the SNS
• Meaningful bounds on beyond-the-SM physics

• It’s just the beginning....  LAr + more CsI soon
• Multiple targets, upgrades and new ideas in the works!
• Other CEvNS experiments are joining the fun!

(CCM, TEXONO, CONUS, CONNIE, MINER, RED, Ricochet, NUCLEUS...)
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