

Search for CEvNS at the SNS with the COHERENT experiment

Ivan Tolstukhin

(Indiana University)

For the COHERENT collaboration

Coherent Elastic Neutrino-Nucleus Scattering - CEvNS

- First predicted in 1974 by D. Freedman
- Neutrino scatters off via exchange a Z-boson (vA \rightarrow vA)
 - Nucleus recoils as a whole
 - Coherent up to $E_v \simeq 50 \text{ MeV}$
- Standard Model calculation
 - Dependence on neutron number

$$\frac{d\sigma}{dE} \propto N^2$$

- Experimental signature nuclear recoil
 - Low energy signals

$$E_r^{\rm max} \simeq \frac{2E_{\nu}^2}{M} \simeq 50 \ {\rm keV}$$

1 MARCH 1974

VOLUME 9, NUMBER 5 Coherent effects of a weak neutral current

PHYSICAL REVIEW D

Daniel Z. Freedman† National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

04/14/2018

Physics of CEvNS

- Standard model tests
 - Proton weak charge $(\sin^2(\theta_w))$
 - Non-standard interactions of neutrinos
 - Neutrino magnetic moment
- Supernova Neutrino detection channel
- Nuclear Form Factors
- Reactor Monitoring
- Dark Matter (DM)
 - ・ CEvNS is important background for ton-scale direct searches

Coherent neutrino background

COHERENT program

- Neutrino source
 - pulsed proton beam on a mercury target at the ORNL Spallation Neutron Source (SNS)
- Several detector subsystems for N² dependence
 - Low threshold detectors
- Well characterized and reduced background
 - Low energy neutrons in the detectors can produce similar recoil spectra as neutrino scattering signal

Spallation Neutron Source (SNS) at Oak Ridge

- Pulsed Proton Beam
 - ~1 MW power
 - 60 Hz, 600 ns spill
 - Pulsing allows natural background rejection for factor $\sim 10^4$
 - Proton collisions with mercury create neutrons and neutrinos (~ 10⁷ cm⁻²s⁻¹ per flavor).

COHERENT Detectors

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)	Start data- taking	Possible Future
CsI[Na]	Scintillating crystal	14.6	20	6.5	09/2015	Continue data-taking
NaI[Tl]	Scintillating crystal	185* /2000	28	13	*high-threshold deployment summer 2016	Expansion to 2 tonne
LAr	Single-phase	22	29	20	12/2016, Upgraded 07/2017	Expansion to ~ 1 tonne scale
Ge	HPGe PPC	10	22	5	2018	Ge expansion w/ lower threshold

- COHERENT non-CEvNS detectors
 - Neutron background
 - Sandia Neutron Scatter Camera (deployed 2014-2016)
 - SciBath (deployed 2015)
 - MARS (deployed 2017 now)
 - Neutrino induced neutron
 - Lead Nube (see G08.08 talk)
 - Iron Nube

04/14/2018

Detector Subsystem - Csl

ψ

- Installed in summer 2015 in the SNS "neutrino-alley"
- 14.6 kg sodium doped Csl inorganic crystal
- High light yield
- Low intrinsic background
- Room temperature operation

First CEvNS observation

Observation of coherent elastic neutrino-nucleus scattering

D. Akimov^{1,2}, J. B. Albert³, P. An⁴, C. Awe^{4,5}, P. S. Barbeau^{4,5}, B. Becker⁶, V. Belov^{1,2}, A. Brown^{4,7}, A. Bolozdy... + See all authors and affiliations

Science 03 Aug 2017: eaao0990 DOI: 10.1126/science.aao0990

- 134 ± 22 observed events
- Standard model prediction 173 ± 48 events
- No CEvNS rejected at 6.7σ
- Consistent with SM within 1σ
- new constraints on NSIs (see D08.04)

04/14/2018

Ivan Tolstukhin, APS April meeting, Columbus, OH

SPOTTING A GHOS

Ncien

Nal(TI) for COHERENT

- Thallium doped sodium iodide scintillating inorganic crystal
 - Scintillation process very similar to CsI scintillation
- Currently 185 kg total
 - 24 7.7 kg detectors
- Currently not sensitive to CEvNS
 - Being used for a different neutrino measurement
 - Charged current interaction on ¹²⁷I
 - Background characterization for tonscale upgrade

LAr for COHERENT

- CENNS-10 detector
- 2x Hamamatsu R5912-MOD02 PMTs
- Wavelength shifter tetraphenyl butadiene (TPB) coated Teflon side walls
- ~ 22 kg fiducial volume
- 20 keVnr energy threshold
- Installed at SNS late 2016
- Upgraded in June 2017 to improve light collection capabilities
- More details D08.02 talk

- Full shielding since August 2017
 - Lead 4"
 - Copper 0.5"
 - Water 9"

Future COHERENT

- Improved background studies
- 10 kg Ge, w/ future upgrade to state-of-the-art tech → study e.m. properties
 - See G08.05 talk
- Nal: 2-ton CEvNS sensitive upgrade → have multiple tons in hand and available for a multi-ton deployment
- Further neutrino induced neutron studies
- LAr: expansion to ~ 1 tonne scale
- Several prospects for additional target nuclei

04/14/2018

COHERENT collaboration

~80 members, 18 institutions 4 countries

Summary

- Search for CEvNS at SNS and measure the coherent neutrino-nucleus cross section in multiple nuclei
- SNS is a great source for a CEvNS measurement due to pulsed beam and beam power
- First CEvNS observation in CsI (August 2017) made by COHERENT collaboration
- Multiple target material detectors (Nal, LAr, Ge) taking data and under development to show N² dependence. Other target materials under consideration for feasibility.
- Working towards ton-scale detectors to increase sensitivity

04/14/2018

Neutron Background

- 100 keV 1 MeV neutrons can produce similar signal
- Neuron flux measured at different positions with multiple detector technologies:
 - Sandia Scatter Camera multiplane liquid scintillator
 - SciBath WLS fiber + liquid scintillator
- Low neutron background in the SNS basement
- Prompt neutron flux ~10⁻⁷ neutrons/cm²/s
- Expected rates in detector below CEvNS signal

04/14/2018