Low energy inelastic neutrino-nucleus interactions at the SNS

Samuel Hedges NuFact 2018 8/16/2018

Duke UNIVERSITY

Duke

Outline

- 1. Motivation
- 2. COHERENT Collaboration
- 3. The Spallation Neutron Source
- 4. Inelastic Measurements at the SNS:
 - 1. ²⁰⁸Pb
 - 2. ⁵⁶Fe
 - 3. ¹²⁷I

Duke UNIVERSITY

5. Summary and Outlook

Low Energy Neutrino-Nucleus Interactions

- Many sources can produce neutrinos with energies less than a few hundred MeV
 - Accelerator
 - Supernova
 - Reactor
 - Terrestrial
 - Solar
- Can have large fluxes through detectors, but cross sections low
- Neutrino-nucleus interactions can be a useful tool to study these sources

Low Energy Neutrino-Nucleus Interactions

- Neutrino-nucleus interactions important for:
 - Understanding supernova dynamics
 - Supernova detection

Dilke

- Interpreting oscillation experiments
- Tests of nuclear models, g_A quenching
- Only a handful of low energy neutrino-nucleus measurements have been made

Measured neutrino-nucleus cross sections, $E_{\nu} < 300$ MeV, terrestrial sources

Isotope	Reaction Channel	Source	Experiment	Measurement (10^{-42} cm^2)	Theory (10^{-42} cm^2)
² H	$^{2}\mathrm{H}(u_{e},e^{-})\mathrm{pp}$	Stopped π/μ	LAMPF	$52 \pm 18(tot)$	54 (IA) (Tatara et al., 1990)
¹² C	${}^{12}{ m C}(u_e,e^-){}^{12}{ m N}_{ m g.s.}$	Stopped π/μ	KARMEN	$9.1 \pm 0.5(\text{stat}) \pm 0.8(\text{sys})$	9.4 [Multipole](Donnelly and Peccei, 1979)
		Stopped π/μ	E225	$10.5 \pm 1.0(\text{stat}) \pm 1.0(\text{sys})$	9.2 [EPT] (Fukugita et al., 1988).
		Stopped π/μ	LSND	$8.9\pm0.3(\mathrm{stat})\pm0.9(\mathrm{sys})$	8.9 [CRPA] (Kolbe et al., 1999b)
	$^{12}{ m C}(u_e,e^-)^{12}{ m N}^*$	Stopped π/μ	KARMEN	$5.1 \pm 0.6 (\text{stat}) \pm 0.5 (\text{sys})$	5.4-5.6 [CRPA] (Kolbe et al., 1999b)
		Stopped π/μ	E225	3.6 ± 2.0 (tot)	4.1 [Shell] (Hayes and S, 2000)
		Stopped π/μ	LSND	$4.3\pm0.4(\mathrm{stat})\pm0.6(\mathrm{sys})$	
	$^{12}{ m C}(u_{\mu}, u_{\mu})^{12}{ m C}^{*}$	Stopped π/μ	KARMEN	$3.2 \pm 0.5 (\text{stat}) \pm 0.4 (\text{sys})$	2.8 [CRPA] (Kolbe et al., 1999b)
	${}^{12}C(\nu,\nu){}^{12}C^*$	Stopped π/μ	KARMEN	$10.5 \pm 1.0(\text{stat}) \pm 0.9(\text{sys})$	10.5 [CRPA] (Kolbe <i>et al.</i> , 1999b)
	$^{12}\mathrm{C}(\nu_{\mu},\mu^{-})\mathrm{X}$	Decay in Flight	LSND	$1060 \pm 30(\text{stat}) \pm 180(\text{sys})$	1750-1780 [CRPA] (Kolbe <i>et al.</i> , 1999b) 1380 [Shell] (Hayes and S, 2000) 1115 [Green's Function] (Meucci <i>et al.</i> , 2004)
	$^{12}{ m C}(u_{\mu},\mu^{-})^{12}{ m N}_{ m g.s.}$	Decay in Flight	LSND	$56\pm8(\mathrm{stat})\pm10(\mathrm{sys})$	68-73 [CRPA] (Kolbe et al., 1999b)56 [Shell] (Hayes and S, 2000)
⁵⁶ Fe	${ m ^{56}Fe}(u_e,e^-){ m ^{56}Co}$	Stopped π/μ	KARMEN	$256\pm108(\mathrm{stat})\pm43(\mathrm{sys})$	264 [Shell] (Kolbe et al., 1999a)
⁷¹ Ga	$^{71}{ m Ga}(u_e,e^-)^{71}{ m Ge}$	⁵¹ Cr source	GALLEX, ave.	$0.0054 \pm 0.0009(tot)$	0.0058 [Shell] (Haxton, 1998)
		⁵¹ Cr	SAGE	$0.0055 \pm 0.0007(tot)$	
		³⁷ Ar source	SAGE	$0.0055 \pm 0.0006(tot)$	0.0070 [Shell] (Bahcall, 1997)
¹²⁷ I	$^{127}{ m I}(u_e,e^-)^{127}{ m Xe}$	Stopped π/μ	LSND	$284\pm91(\mathrm{stat})\pm25(\mathrm{sys})$	210-310 [Quasi-particle] (Engel et al., 1994)

Supernova Dynamics

- Neutrino-nucleus interactions can:
 - Cause nuclei to emit particles (protons, neutrons, alphas) altering nuclear abundances generated in a supernova
 - Contribute to neutrino thermalization rate
 - Modify neutrino spectrum emitted by supernova

Supernova Detection

 Supernova interactions can be studied with nuclei in current, future detectors: DUNE—Ar LVD—⁵⁶Fe

HALO—²⁰⁸Pb

Also water cerenkov detectors (¹⁶O), LS detector (¹²C)

COHERENT

The COHERENT Collaboration

- ~80 members from 18 institutions in 4 countries
- Formed to observe CEvNS in a variety of targets: Csl, Na, Ar, Ge
 - Also measuring charged-current interactions on Pb, Fe, I, ...
- Uses neutrinos produced at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), Tennessee

Duke

The COHERENT Collaboration

- Detectors located 20-30m from the liquid Hg target at the SNS
 - Much of the space between filled with concrete/gravel, reduces neutron background
 - Several past and current detectors deployed measuring neutron background

Dukeuniversity

The Spallation Neutron Source (SNS)

The Spallation Neutron Source

- Stopped-pion source
 - Electron, muon, and antimuon neutrinos
- High neutrino flux

DUKe

- COHERENT's detectors get $\sim 4.3 \times 10^7 \text{ v/cm}^2/\text{sec}$ (20 m from source)
- In 308.1 live-days, 1.76 x 10²³
 protons-on-target (~1/3 g)

The Spallation Neutron Source

- Energy in similar range as supernova neutrino spectrum
- Electron and anti-muon neutrino timing dictated by muon decay
 - Reduces beam-related backgrounds

Duke

 ~1 μs proton pulses with 60 Hz repetition rate reduces backgrounds

The Spallation Neutron Source

Neutrino-Nucleus Interactions on ²⁰⁸Pb

Neutrino-Nucleus Interactions on ²⁰⁸Pb

- Original interest for COHERENT to study neutrino-induced neutrons background from lead:
 - Lead a common shielding material in low-background experiments
 - Neutrinos can interact in lead can produce excited nuclei that can deexcite through neutron emission
 - Neutrons will have timing structure of neutrinos, similar energy depositions
- Calculated 1n and 2n cross sections (in units of 10⁻⁴² cm²) as a function of neutrino energy from [9], but never measured

E_{ν}		$\nu_e \rightarrow e$		$\nu \rightarrow \nu$			[9]
	1n	2n	total	1n	2n	total	
5	—		0.39E-07	—		0.67E-11	
10	0.29E-11		0.09	0.002		0.007	
15	0.91		1.54	0.06		0.08	
20	4.96	_	6.51	0.20		0.27	
25	14.66	0.45	17.63	0.46	0.03	0.62	
30	25.05	3.15	32.22	0.87	0.15	1.22	
35	29.27	10.85	45.37	1.44	0.42	2.15	
40	33.56	23.68	64.10	2.15	0.93	3.48	
45	37.91	38.97	85.33	2.97	1.74	5.25	
50	42.54	53.79	106.16	3.86	2.93	7.50	
55	47.17	71.63	130.09	4.79	4.56	10.24	

Neutrino-Nucleus Interactions on ²⁰⁸Pb

- Originally deployed LS cell in shielding to be used by CsI detector (2.2 tons lead)
- Best fit of the excess due to neutrino-induced neutrons was 0.97 ± 0.33 n/GWHr/kg of Pb
 - Factor ~1.7 smaller than calculated in [11]

ike..

- Additional neutron shielding deployed around the CsI detector
- Dedicated experiment designed to study interaction

Lead Neutrino Cube

- Nearly 1-ton of ²⁰⁸Pb, four LS cells (EJ-301)
 - PSD to identify neutron events
 - Muon vetos to reject muoninduced backgrounds
 - Water shielding to reduce environmental, beam-related neutron backgrounds
- Data collection began in 2016
- Designed to be portable, easy to switch targets

Duke

Lead Neutrino Cube

- Looking for excess of neutron events from charged-current interactions in delayed window following POT
 - Also measure neutron spectrum
 - Also look for coincidences between cells for 2n events
- Data collection ongoing

Neutrino-Nucleus Interactions on ⁵⁶Fe

Neutrino-Nucleus Interactions on ⁵⁶Fe

- Iron is a common shielding material
- Previous flux-averaged measurement by KARMEN^[13]: $2.51 \pm 0.83 \pm 0.42 \times 10^{-40} \text{ cm}^2$
- Proposed as target for supernova neutrino detectors such as OMNIS
- LVD sensitive to supernova neutrino-Fe interactions through NC channel

Iron Neutrino Cube

- Partial deployment in February 2017, full configuration in July 2017
- Nearly 700 kg of iron
- Inclusive charged-current cross sections shown from calculations in [15]
- Neutron emission cross sections for supernova neutrinos from [12]

Diike

Neutrino Cube Upgrades

- PSD difficult for lowest energy neutrons
 - A ⁶Li-loaded LS could look for neutron captures, improving neutron identification
- Additional nuclear targets being considered

Duke

Neutrino-Nucleus Interactions on ¹²⁷I

Neutrino-Nucleus Interactions on ¹²⁷I

- ¹²⁷I proposed^[17] as potential for a solar/supernova neutrino detector
 - Utilized similar to radiochemical approach used at Homestake with ³⁷Cl^[18]
 - Charged-current threshold of 789 keV, used to determine ratio of ⁷Be to ⁸B solar neutrino flux
 - Larger cross section

DUKEUNIVERSITY

- Work done to understand GT strength distribution for ¹²⁷I in (p,n)^[19], (He,t)^[20], angular correlation^[21] experiments
- Inclusive cross section calculated by Mintz and Pourkaviani^[22]

¹²⁷I Measurement at LAMPF

 Radiochemical approach used at LAMPF^[23] to measure exclusive flux-averaged cross section

 $\sigma = 2.84 \ \pm 0.91 \pm 0.25 \times 10^{\text{-40}} \, \text{cm}^2$

- ¹²⁷Xe bubbled out of tank, decays counted (half-life of 36.4 days)
- Exclusive measurement
 - ¹²⁷Xe can de-excite through n, p, or α emission
 - Particle emission threshold in ¹²⁷Xe is 7.23 MeV, most of the electron neutrinos produced are more energetic
- No energy dependence, flux-averaged measurement
- Suggested repetition with electronic Nal detectors to measure energy dependence

NalvE

- Prototype detector consisting of 24 NaI[TI] scintillators with a total mass of 185 kg
- Goal is to measure inclusive charged-current cross section on ¹²⁷I as a function of neutrino energy
- Originally deployed in 2016, upgraded in 2017

NalvE

- Detector will see scintillation from products of chargedcurrent interaction (electrons, protons, neutrons, alphas, gammas)
- Detector coarsely segmented
- Use simulations such as MARLEY^[26] to generate expected output

Duke

Ton-Scale Nal Detector

- Several hundred more NaI[TI] scintillators available to make measurement
- Plan to simultaneously observe CC interactions on 127 I and CE $v\rm NS$ interactions on $^{23}\rm Na$, using a dual-gain base
- Test production of bases completed, testing in progress
- Simulations underway to determine shielding requirements, finalize detector support structure

Summary and Outlook

- Few low-energy neutrino-nuclear measurements exist, despite their use for understanding supernovae, fundamental physics
 - Theoretical predictions for these cross sections, scaling with energy, particle emission
- Detectors currently deployed to SNS to study neutrino-nucleus interactions in Pb, Fe, I
 - SNS provides large neutrino flux to make these measurements possible
- Interest in measurements on other targets (Ar for DUNE, ¹⁶O to improve flux normalization, other metals for neutrino cubes)

References

[1] J. A. Formaggio and G. P. Zeller, "From eV to EeV: Neutrino cross sections across energy scales," Rev. Mod. Phys. 84, 1307 (2012)

[2] A. de Gouvea, et al., "Neutrinos," arXiv:1310.4340 (2013)

[3] K. Langanke, et al., "Effects of Inelastic Neutrino-Nucleus Scattering on Supernova Dynamics and Radiated Neutrino Spectra," Phys. Rev. Lett. 100 (2008)

[4] https://www.snolab.ca/halo/albums/construction/index.html

[5] https://www.bo.infn.it/lvd/

[6] http://cds.cern.ch/record/2288139

[7] D. Akimov, et al., "COHERENT 2018 at the Spallation Neutron Source," arXiv:1803.09183 (2018)

[8] S. R. Elliott, "Measuring supernova neutrino temperatures using lead perchlorate," Phys. Rev. C 62, 065802 (2000)

[9] J. Engel, G.C. McLaughlin, C. Volpe, "What Can Be Learned with a Lead-Based Supernova-Neutrino Detector?," Phys. Rev. D 67, (2003)

[10] D. Akimov, et al., "Observation of coherent elastic neutrino-nucleus scattering," Science (2017)

[11] R Lazauskas and C Volpe, "Low-energy neutrino scattering measurements at future spallation source facilities," J. Phys. G: Nucl. Part. Phys. 37 125101 (2010)

[12] E. Kolbe, et al., "Neutrino-nucleus reactions and nuclear structure," J. Phys. G: Nucl. Part. Phys. 29 (2003)

[13] R. Maschuw, et al., "Neutrino Spectroscopy With KARMEN," Progress in Particle and Nuclear Physics 40, 183-192 (1998)

[14] https://neutrino.ikp.kit.edu/static/karmen/

[15] A.R. Samana and C.A. Bertulani, "Detection of supernovae neutrinos with neutrino-iron scattering," Phys. Rev. C 78, (2008)

[16] J. Ashenfelter, et al., "Performance of a segmented 6Li-loaded liquid scintillator detector for the PROSPECT experiment," Journal of Instrumentation 13, (2018)

[17] W. C. Haxton, "Radiochemical neutrino detection via 127 I(v_e , e⁻) 127 Xe," Phys. Rev. Lett. 60, 768 (1988)

[18] R. Davis, et. al, "The Chlorine and Bromine Solar Neutrino Experiments," Proceedings of Workshop on Solar Neutrinos, Moscow, USSR, October 2-8, (1985)

[19] M. Palarczyk, et al., "Measurement of Gamow-Teller strength for 127 I as a solar neutrino detector," Phys. Rev. C 59, 500 (1999)

[20] A. E. Champagne, et al., "127I(3He,t)127Xe reaction with relevance to neutrino detection," Phys. Rev. C 39, 248 (1989)

[21] A. Garcia, et al., "Low lying states in 127 Xe : Implications for the efficiency of an ¹²⁷I solar v detector," Phys. Rev. C 41, 775 (1990)

[22] S.L. Mintz and M. Pourkaviani, "Inclusive neutrino reactions in ¹²⁷I," Nuc. Phys. A 584 4 665-674 (1995)

[23] Distel, et al., "Measurement of the cross section for the reaction ¹²⁷I(v_e, e⁻)¹²⁷Xe_{bound states} with neutrinos from the decay of stopped muons," Phys. Rev. C 68, 054613, 2003.

[24] Cleveland, et al., "Calibration of the iodine solar neutrino detector with a ve beam," 23rd International Cosmic Ray Conference, Vol. 3, 19-30 July 1993

[25] Christopher Grant, "Low-Energy Neutrino-Argon Interactions: A Window into Stellar Collapse," NuEclipse, Aug 18-20 2017

[26] http://www.marleygen.org/index.html

