NalvE: A Nal[Tl] Neutrino Experiment at the SNS

Samuel Hedges for the COHERENT Collaboration 10/27/2017

$\text{CE}\nu\text{NS}$ Recoils of Na at the SNS

- Sodium lighter than COHERENT's other nuclei, test expected N² scaling
- Lower cross section, but more energetic nuclear recoils
- Collaboration has access to nine tons of NaI[TI] scintillators from Advanced Spectroscopic Portal program
- Can't control internal crystal backgrounds
 - Adding crystals can increase backgrounds
- 10-stage PMTs make achieving sufficient energy thresholds difficult

Nal[TI] Quenching Factor

- Nuclear recoil light output quenched compared to electron recoils of the same energy
- Dedicated beamline at Triangle Universities Nuclear Laboratory (TUNL) for quenching factors measurements
- NaI[TI] quenching factor run previously measured at TUNL

Nal ν E-185 Overview

- Array of twenty-four 7.7kg NaI[TI] scintillators deployed in summer of 2016
- Designed to fit into existing "neutrino cube"
- Two modes of operation:
 - High-voltage mode for backgrounds for CEvNS off Na (<40 keVee)
 - Low-voltage mode for charged-current interaction on ¹²⁷I (<52.8 MeV)
- Uses timing, energy, event multiplicity to reduce backgrounds
- Prototype for multi-ton detector capable of simultaneously observing CEvNS and chargedcurrent interactions

Backgrounds for CE ν NS Signal

- Neutrinos interacting via in CE ν NS in both prompt and delayed beam windows
- CE ν NS events will occur in single crystal
 - Reject backgrounds using coincidence window (within 100ns)
- Expect backgrounds to be high in NalvE-185 lack of high-Z shielding makes it susceptible to environmental gammas
- Steady state beam-off backgrounds 200-500 counts/keV kg day before beam timing suppression
 - In 1µs window: 0.01 to 0.03 counts/keV kg day below 40 keVee
- Environmental steady state backgrounds increase when beam on, but shielding should reduce this

Charged Current Reaction on ¹²⁷I at the SNS

- Measure the charged current cross section of $\nu_{\rm e}$ on $^{127}{\rm I}$

$$\nu_e + {}^{127}\text{I} \rightarrow {}^{127}\text{Xe} + e^-$$

- Can measure g_A quenching from ¹²⁷I charged current cross section
- Tests nuclear models
- Radiochemical approach at LAMPF measured flux-averaged cross section of

 σ =2.84 ± 0.91 (*stat*) ± 0.25 (*sys*) × 10⁻⁴⁰ cm²

 Doesn't include interactions where ¹²⁷Xe state unbound (particle emission threshold of 7.23 MeV) TABLE III. Contributions of individual multipoles to the total cross section for neutrinos from muon decay, in units of 10^{-40} cm². The two columns correspond to quenched and free values for g_A , respectively (see text).

J^{\star}	$g_{A} = -1.0$	$g_A = -1.26$
0+	0.096	0.096
0-	0.00001	0.00002
1+	1.017	1.528
1-	0.006	0.008
2+	0.155	0.213
2-	0.693	1.055
3+	0.149	0.171
3-	0.017	0.025
Total	2.098	3.096

J. Engel, S. Pittel, and P. Vogel, Phys. Rev. C 50(3), 1994

M. Sajjad Athar, Shakeb Ahmad, and S.K. Singh, Nuc. Phys. A 764(9), 2006

Charged Current Measurement

- Measure energy of lepton produced in chargedcurrent interaction (<52.8 MeV)
- Cosmic rays main background
- Signal in delayed window
 - Prompt neutron flux high in NalvE location because of void in shielding—larger detector will be different location in hallway

• Expected signal of 0.33 counts/crystal/month

Background Reduction Through Self-Vetoing

- No muon vetos deployed in initial run
- Charged current event topology expected to be distinguishable from cosmic rays, which can have higher multiplicities
- Focusing on low multiplicity events gives reduction in backgrounds
 - Outer detectors have higher low multiplicity backgrounds because of clipping muons
 - ~45 times higher backgrounds in corners compared to central detectors
- ¹²⁷Xe unbound state can emit particles, affect event topology

Background Reduction Through Muon Tracking

- Hough transform parameterizes straight lines in (ρ, θ) space
- Each detector passing through a straight line increments an accumulator
- After passing through all detectors in event, lines with highest accumulators used to create possible tracks

Energy of signals in event

Nal ν E-185 Upgrade

- Veto panels will reduce muon background
- 1.5" steel shielding between veto and detectors to avoid vetoing signal
- Muon vetos operating in similar triggering configuration, allow for study of muon physics in NaI[TI] detectors
- Construction complete, testing now, planned deployment in November

Nal[Tl] Steel Muon Veto

Summary and Outlook

- NalvE-185 collecting data to measure charged current reaction in ¹²⁷I
- Planned upgrades will reduce muon backgrounds, help to characterize properties of signal
- NalvE-185 prototype is one of the ways COHERENT preparing for measuring $CE\nu NS$ of Na nuclei
- Goal is to deploy a multi-ton detector capable of simultaneously observing $CE\nu NS$ of Na nuclei and charged current interaction on ¹²⁷I

Back up

Previous ¹²⁷ I Charged Current Measurement

• Radiochemical approach at LAMPF measured flux-averaged cross section of

 σ = 2.84 ± 0.91 (*stat*) ± 0.25 (*sys*) ×10⁻⁴⁰ cm²

• ¹²⁷Xe decays exclusively to excited ¹²⁷I states:

¹²⁷Xe \rightarrow ¹²⁷I* + γ (203, 375 keV) ¹²⁷I* \rightarrow ¹²⁷I + e^- (~0.9, 4.7 keV)

- Need accurate information on ¹²⁷Xe produced through other means (cosmogenic, muons, etc.)
- Doesn't include interactions where ¹²⁷Xe state unbound (particle emission threshold of 7.23 MeV)

Dual Output Bases

- PMTs begin to saturate, see non-linear light output above a certain energy (voltagedependent)
- Solution is to use a dual-output base designed by Lorenzo Fabris at ORNL
 - With base, have achieved target thresholds for Na CEvNS recoils (3-40 keVee) in low-energy output while avoiding saturation effects up to 60 MeV in high-energy output

Nal ν E-185 Data Acquisition

- Use internal digitizers trigger to record signals (regardless of beam presence)
- Separately digitize timing signals from SNS to look for beam-correlated events
- Eight 1250ns accumulator windows used for calculating integral, detecting pile-up of signals
- Peak height, peak high index, pile-up flag also recorded for every signal

Prompt Signals in Nal ν E

Neutrino Timing Distribution

D. Akimov, et al., arXiv:1509.08702, 2015