

Search for CEvNS with a liquid argon scintillation detector

V

 ν

 Z_0

A

R. Tayloe, Indiana U. for the COHERENT collaboration

Outline:

- physics of CEvNS
- COHERENT at ORNL/SNS
- CENNS-10 detector:
 - history/design
 - deployment
 - preliminary data
 - projections
- summary

Coherent Elastic v-Nucleus Scattering:

"CEvNS": Coherent Elastic v-Nucleus Scattering: $vA \rightarrow vA$

Neutrino scatters with low momentum transfer coherently, elastically from entire nucleus. For large nucleus, R_N ~few fm, and:

$$E_{\nu} \lesssim \frac{hc}{R_N} \cong 50 \text{ MeV}$$

Cross section is large... in fact largest v channel at O(10 MeV) on heavier nuclei, eg Ar

and has distinctive N² dependence

.. but recoil energy is quite small:

Physics of CEvNS:

- Supernovae: Expected to be important in core-collapse SN and possible SN detection channel.
- Nuclear Physics: nuclear form factors
- v oscillations: A possible v_s detection channel
- Standard Model tests, eg: $\sin^2 \theta_w$
- Dark Matter: Important background for 10-ton direct searches

Physics of CEvNS:

• Search for accelerator-produced, low-mass, dark matter

To realize this physics, require:

- intense v source
- low bckgrd location
- low threshold detector..

09/22/2017

R. Tayloe, LIDINE 2017

ψ

1 ton-year LAr

SNS DM sensitivity

COHERENT experiment at SNS/ORNL

ORNL Spallation Neutron Source (SNS) is also a world-class v source:

- intense proton beam (~1MW, 1 GeV)
- pulsed (60 Hz, 600ns spill time)...
- ~ 5000MWhr/year
- ~ 2E23 POT!

09/22/2017

R. Tayloe, LIDINE 2017

ψ

Hg TARGET

SHIELDING MONOLITH

COHERENT experiment at SNS/ORNL

- a low-background experimental area has been acquired for COHERENT
- 20-29 m from target

PROTON BEAM

COHERENT experimental strategy at SNS/ORNL

Measure N² dependence of CEvNS process

with multiple targets/detector technologies

- (event rate)/kg is high, so relatively small (10-100 kg) detectors sufficient
- radiological background requirements fairly modest, because of pulsed beam
- need low E thresholds !

Nuclear Target	Technology	Mass (kg)	Distance from source	Recoil threshold
		44.0		
Csl[Na]	Scintillating Crystal	14.6	19.3	6.5
Ge	HPGe PPC	10	22	5
LAr	Single-phase	22	29	20
Nal[TI]	Scintillating crystal	185*/200 0	28	13

- recent observation of CEvNS
- D. Akimov *et al.*, *Science* 10.1126/science.aao0990 (2017)
- 134 ± 22 CEvNS events

Nuclear Target	Technology	Mass (kg)	Distance from source	Recoil threshold
			(111)	(keVr)
Csl[Na]	Scintillating Crystal	14.6	19.3	6.5
Ge	HPGe PPC	10	22	5
LAr	Single-phase	22	29	20
Nal[TI]	Scintillating crystal	185*/200 0	28 Dinosaar heretic looks for extemption 2, 200	13 n to increase Fluore scale or magnetic cottom libers y 202
 recent observation of CEvNS D. Akimov <i>et al.</i>, <i>Science</i> 10.1126/science.aao0990 (2017) 134 ± 22 CEvNS events)	Sporting A Sporting A Choose a definition of the Sport of the sport of the Choose a definition of the Sport of the sport of the Sport of	m ON

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)	
Csl[Na]	Scintillating Crystal	14.6	19.3	6.5	
Ge	HPGe PPC	10	22	5	
LAr	Single-phase	22	29	20	
Nal[TI]	Scintillating crystal	185*/200 0	28	13	

• future

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)
Csl[Na]	Scintillating Crystal	14.6	19.3	6.5
Ge	HPGe PPC	10	22	5
LAr	Single-phase	22	29	20
Nal[TI]	Scintillating crystal	185*/200 0	28	13

• today

The COHERENT collaboration

http://sites.duke.edu/coherent

~80 members, 18 institutions 4 countries

arXiv:1509.08702

ψ

The CENNS-10 detector

timeline:

 ('12-'15) built at Fermilab for CENNS@Fermilab effort led by J. Yoo (now at KAIST) along with: A. Lathrop, R. Flores, R. Schmidt, E. Voirin, D. Markley, R. Davila, D. Butler, L. Harbacek

The CENNS-10 detector

timeline:

- ('12-'15) built at Fermilab for CENNS@Fermilab effort led by J. Yoo (now at KAIST) along with: A. Lathrop, R. Flores, R. Schmidt, E. Voirin, D. Markley, R. Davila, D. Butler, L. Harbacek
- (2015) moved to Indiana U. for commissioning, upgrades, neutron tests
- (2016) installed at SNS for COHERENT

The CENNS-10 (LAr) Detector:

CENNS-10 SNS timeline:

- 10-12/2016: (re)build detector at SNS
- 12/16, 3-5/17: run with TPB-acrylic parts, E_{thresh}~100keVnr, "Spring17" data
- 6/17: upgrade: TPB-Teflon reflectors, PMTs, shielding
- 7/17-present: run in upgraded mode, E_{thresh}~20keVnr, "Summer17" data
- should collect 1/2 SNS-year of data by 12/17 (before 5-month SNS shutdown)

WLS, etc, optical tests:

 a variety of visible, VUV, WLS, reflectance tests have been performed at IU, ORNL, MEPHI, and harvested from literature, details to appear

ψ

The CENNS-10 (LAr) Detector:

Specs:

- 22 kg LAr fiducial volume
- 90W single-stage pulse-tube cold head
- SAES MonoTorr gas purifier for ~1 ppm purity
- TPB-coated PMTs/teflon side walls
- 2 × Hamamatsu 8"PMTs w/QE=18%@400 nm
- CAEN 1420 (250MHz, 12-bit) digitizer
- Pb/Cu/H2O shield
- Energy threshold ≈ 20keVnr
- Expect ≈140 CEvNS events/SNS-year
- Running in current configuration since July '17

The CENNS-10 (LAr) Detector

cryo/gas system:

- 90W single-stage PT90 cold head •
- ~50kg total LAr mass, fill (from • gas) over ~1 week, extremely

The CENNS-10 (LAr) Detector

• SAES MonoTorr gas purifier for ~1 ppm purity

- As data quality check introduce N₂ after spring run
- Introduce ~25 ppm N₂
- Triplet lifetime changed from ~1.2 µs to 0.20 µs
 - Correspond to 1 ppm and 20 ppm respectively²
- Verified with LDetek8000 N₂ monitor readings

² R. Acciarri et al. Effects of Nitrogen Contamination in Liquid Argon. JINST, 5:P06003, June 2010.

٦ſ

The CENNS-10 (LAr) Detector

Preliminary data analysis: Spring17 data, Single PE analysis

Single PE waveform: in situ

Plots from IU grad student: M. Heath

Single PE spectrum: test bench

Single PE spectrum: in situ

09/22/2017

R. Tayloe, LIDINE 2017

The CENNS-10 (LAr) Detector

Preliminary data analysis: Spring17 data, waveform integration

- fit prompt (singlet) light
- subtract scaled singlet waveform
- integrate delayed (triplet) light

137Cs spectrum

Ш

09/22/2017

The CENNS-10 (LAr) Detector

Preliminary data analysis: Spring17 data, waveform integration

- Fit prompt (singlet) light
- subtract scaled singlet waveform
- integrate delayed (triplet) light
- form F90 ratio (fract of light in 1st 90ns) for PSD (pulse-shape discrimination)

R. Tayloe, LIDINE 2017

The CENNS-10 (LAr) Detector

Preliminary data analysis: Summer17 data, after upgrades

Plots from IU/SNS grad student: J. Zettlemoyer

09/22/2017

CENNS-10 simulations

Geant4 simulation results

Simulation	Value	comment
Parameter		
Tube QE	18%	
LAr Scintillation Yield ER	40/keV	
Quenching Factor	25%	H. Cao et al., SCENE Collaboration, <i>Phys. Rev.</i> D91 (2015) 092007.
Time Constants	6 ns fast, 1.6 us slow	
Quenching Factor	25%	
Scintillation LAr peak	128 nm	
Scintillation WLS peak	450 nm	
TPB Attenuation Length at 400 nm	20 um	
Teflon Reflectivity	95%	
LAr Attenuation Length	2 m LAr, 20 m Vis	
Scintillation Yield Ratio (Fast/Slow)	0.7 NR, 0.25 ER	
TPB Thickness	0.2 mg/cm ²	
FV diameter/height	21cm/46cm	

Co57 Simulation vs Data

CENNS-10 simulations

Estimated CEvNS signal/backgrounds:

- E_{thresh} ~ 20keVnr
- beam-unrelated bckgnds:
 - Ar39, environmental γ reduced with PSD, measured, subtracted, estimated to be negligible
- beam-related bckgnds:
 - neutrons: measured at CENNS-10 location, all prompt, estimate ~60evts/yr
- CEvNS signal
 - estimate 60 prompt/ 80 delayed evts/yr

Predictions for: Summer17 data, after upgrades

Future/Summary for LAr and COHERENT

Future:

- current run ends 12/17, should provide 1st CEvNS LAr signal
 - 5-month shutdown, in early 2018, possible upgrades:
 - incremental PMT, signal improvements
 - new/better reflectors
 - more/better calibration at low-energy
 - depleted-Ar (?)
- longer term possibilities
 - O(1 ton) LAr
 - depleted Ar,
 - LXe, LNe
- ideas? (let's talk!)

Summary:

- on-track for CEvNS measurement on LAr in next year
- opportunities exist for upgrades to detector and physics program
- Thanks to all who have helped make this happen!: IU group, COHERENT collab, Fermilab, SNS, funding agcys, this community

09/22/2017

LIDINE'17 Search for CEvNS with a liquid argon scintillation detector

(15min talk)

Abstract:

The COHERENT collaboration is deploying a suite of low-energy detectors in a low-background corridor of the ORNL Spallation Neutron Source (SNS) to measure coherent elastic neutrino nucleus scattering (CEvNS) on an array of nuclear targets employing different technologies. A measurement of CEvNS on different nuclei will test the \$N^2\$-dependence of the CEvNS cross section and further the physics reach of the COHERENT effort. The first step of this program has been realized recently with the observation of CEvNS in a 14.6 kg Csl detector. Operation and deployment of Ge and Nal detectors are also underway. A 22 kg, single-phase, LAr detector (CENNS-10) started data-taking in Dec. 2016 and will provide results on CEvNS from a much lighter nucleus. The design and performance of the CENNS-10 detector will be presented.

