neutrino-nucleus scattering with COHERENT experiment

R. Tayloe, Indiana U.
for the COHERENT collaboration

Outline
• physics of CEvNS
• COHERENT at ORNL/SNS
• discovery of CEvNS
• Future plans
Coherent Elastic ν-Nucleus Scattering:

“CEvNS”:

Coherent Elastic ν-Nucleus Scattering: $\nu A \rightarrow \nu A$

Neutrino scatters with low momentum transfer coherently, elastically from entire nucleus (eg Cs, I, Ar). For a large nucleus, $R_N \sim$ few fm, and:

$$E_\nu \lesssim \frac{\hbar c}{R_N} \approx 50 \text{ MeV}$$
Coherent Elastic ν-Nucleus Scattering:

Cross section is large… in fact largest ν channel at $O(10 \text{ MeV})$ on heavier nuclei, eg Ar

and has distinctive N^2 dependence

$$\frac{d\sigma}{dE} = \frac{G_F^2}{4\pi} \left[(1 - 4\sin^2 \theta_w)Z - (A - Z)\right]^2 M \left(1 - \frac{ME}{2E^2_{\nu}}\right) F(Q^2)^2$$
Coherent Elastic ν-Nucleus Scattering:

.. but recoil energy is quite small:

$$E_{r}^{\text{max}} \approx \frac{2E_{\nu}^{2}}{M} \approx 50 \text{ keV}$$

only recently

And so, the CEvNS process has never been observed... 40 years after its prediction...
Coherent Elastic ν-Nucleus Scattering:

Physics reach of CEvNS:

- Understanding supernovae (SN):
 - Expected to be important in core-collapse SN and possible SN detection channel.
- Standard Model tests, e.g.: NSI, $\sin^2 \theta_w$, neutrino magnetic moments
- Nuclear Physics: nuclear form factors
- ν oscillations: Investigation of ν_{sterile} oscillations
- Reactor monitoring (non-proliferation)
- Dark Matter:
 - Important background for O(10-ton) direct searches
 - Detectors sensitive for accelerator produced DM…

SN burst ν energy spectrum
CEvNS physics:
Search for accelerator-produced, low-mass, dark matter

Via:
\[p \rightarrow \text{Hg} \rightarrow \pi^0,\pm \]
\[\pi^0 \rightarrow \gamma + V(*) \rightarrow \gamma + \chi^\dagger + \chi \]

New results, follow up to:

1 ton-year LAr SNS DM sensitivity
Coherent Elastic ν-Nucleus Scattering:

Physics reach of CEvNS:

- Understanding supernovae (SN):
 - Expected to be important in core-collapse SN and
 - possible SN detection channel.

- Standard Model tests, e.g.
 - NSI, $\sin^2 \theta_{\nu\nu}$,
 - neutrino magnetic moments

- Nuclear Physics:
 - n_ν oscillations:
 - A possible n_ν detection channel
 - reactor monitoring (non-proliferation)

- Dark Matter:
 - Important background for $O(10^{10} \text{ ton})$ direct searches
 - detectors sensitive for accelerator produced DM…

To realize these physics topics, require:
- intense ν source
- Low-background location
- Low-threshold detectors
COHERENT experiment at SNS/ORNL

ORNL Spallation Neutron Source (SNS) is also a world-class ν source:

- intense proton beam (1.3MW, 1 GeV)
- pulsed (60 Hz, 600ns spill time)...
- \(\sim 5000\text{MWhr/year} \)
- \(\sim 2\times10^{23} \text{ POT/yr}! \)

SNS ν energy spectrum

\[\nu_\mu, \bar{\nu}_\mu, \nu_e \]

SNS ν time distribution

- Prompt ν_μ from π decay in time with the proton pulse
- Delayed anti-ν_μ, ν_e on μ decay timescale
COHERENT experiment at SNS/ORNL

Neutron backgrounds at the 1.3 MW SNS?
(much work went into this question)

Sandia scatter camera

neutron flux $\sim 10^5$ too high on target building, main floor
COHERENT experiment at SNS/ORNL

Found a quiet basement location with low beam-related and cosmic neutron rate.
The COHERENT collaboration

~80 members, 18 institutions, 4 countries

arXiv:1509.08702

http://coherent.ornl.gov
COHERENT experiment at SNS/ORNL

• SNS “ν-alley” for COHERENT
• 20-29 m from target
COHERENT experimental strategy at SNS/ORNL

1st goal: Measure N² dependence of CEvNS process

with multiple targets/detector technologies

• (event rate)/kg is high, so relatively small (10-100 kg) detectors sufficient
• radiological background requirements fairly modest, because of pulsed beam
• need low E thresholds!
COHERENT detectors

<table>
<thead>
<tr>
<th>nuclear target</th>
<th>technology</th>
<th>mass (kg)</th>
<th>source distance (m)</th>
<th>recoil threshold (keVr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsI[Na]</td>
<td>Scintillating crystal</td>
<td>14.6</td>
<td>19.3</td>
<td>6.5</td>
</tr>
<tr>
<td>Ge</td>
<td>HPGe PPC</td>
<td>6</td>
<td>22</td>
<td>0.6</td>
</tr>
<tr>
<td>LAr</td>
<td>Single-phase</td>
<td>22</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>NaI[Tl]</td>
<td>Scintillating crystal</td>
<td>185/2000</td>
<td>28</td>
<td>13</td>
</tr>
</tbody>
</table>

For more details: arXiv:1803.09183
COHERENT detectors

1st results from CsI this past summer (2017)!

<table>
<thead>
<tr>
<th>nuclear target</th>
<th>technology</th>
<th>mass (kg)</th>
<th>source distance (m)</th>
<th>recoil threshold (keVr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsI[Na]</td>
<td>Scintillating crystal</td>
<td>14.6</td>
<td>19.3</td>
<td>6.5</td>
</tr>
<tr>
<td>Ge</td>
<td>HPGGe PPC</td>
<td>6</td>
<td>22</td>
<td>0.6</td>
</tr>
<tr>
<td>LAr</td>
<td>Single-phase</td>
<td>22</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>NaI[Tl]</td>
<td>Scintillating crystal</td>
<td>185/2000</td>
<td>28</td>
<td>13</td>
</tr>
</tbody>
</table>

SNS “ν-alley”
COHERENT with CsI[Na]

CsI scintillating crystal:

- 14.6 kg sodium-doped CsI
- high light yield (13.35 pe/keVee)
- uniform within ~2%
- low intrinsic bg
- room temperature
- Readout with Hamamatsu R877-100 13cm dia. PMT

2 kg test crystal @U. Chicago. Amcrys-H, Ukraine

J.I. Collar et al., NIM A773 (2016) 56-67

Sodium-doped CsI is favorable, due to suppressed afterglow
COHERENT with CsI[Na]

Installed in ν-alley at ORNL SNS in summer 2015:

- Layer | HDPE* | Low backg. lead | Lead | Muon veto | Water
- Thickness | 3” | 2” | 4” | 2” | 4”
- Colour | | | | | |
COHERENT: data collection

- Neutron background data-taking for ~2 years before first CEvNS detectors
- CsI data-taking starting summer 2015

1.76 x10^{23} POT delivered to CsI (7.48 GWhr)
COHERENT, CsI analysis:

Overall strategy:
- count beam-on low-energy events (nuclear recoils)
- subtract steady state backgrounds from beam-off data
- measure/subtract beam-related backgrounds (neutrons):
 - external
 - neutrino-induced neutrons (“NIN”s)

\[\nu_e + ^{208}\text{Pb} \rightarrow ^{208}\text{Bi}^* + e^- \text{ CC} \]
\[\nu_x + ^{208}\text{Pb} \rightarrow ^{208}\text{Pb}^* + \nu_x \text{ NC} \]
 \hspace{1cm} 1n, 2n emission

- 2 independent analyses with slightly different cut optimization yield consistent results
- “Analysis I” presented here

\[\approx 1.2 \text{ PE/keVnr} \]
COHERENT, CsI results:

Steady-state-background subtracted data:

- Energy: \(\approx 1.2 \text{ PE/keVnr} \)
- Time (wrt \(\nu \) pulse)
COHERENT, CsI results:

Likelihood analysis: 2D in energy (pe) and time

- best fit of data: 134 ± 22 CEvNS events
- SM prediction: 173 ± 48 CEvNS events
- Null hypothesis (=no CEvNS) rejected at 6.7σ
- consistent w/SM within 1σ

<table>
<thead>
<tr>
<th>Source</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam ON coincidence window</td>
<td>547 counts</td>
</tr>
<tr>
<td>Anticoincidence window</td>
<td>405 counts</td>
</tr>
<tr>
<td>Beam-on bg: prompt beam neutrons</td>
<td>7.0 ± 1.7</td>
</tr>
<tr>
<td>Beam-on bg: NINs (neglected)</td>
<td>4.0 ± 1.3</td>
</tr>
<tr>
<td>Signal counts, single-bin counting</td>
<td>136 ± 31</td>
</tr>
<tr>
<td>Signal counts, 2D likelihood fit</td>
<td>134 ± 22</td>
</tr>
<tr>
<td>Predicted SM signal counts</td>
<td>173 ± 48</td>
</tr>
</tbody>
</table>

6 ≤ PE ≤ 30, 0 ≤ t ≤ 6000 ns

Uncertainties on signal and background predictions

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event selection</td>
<td>5%</td>
</tr>
<tr>
<td>Flux</td>
<td>10%</td>
</tr>
<tr>
<td>Quenching factor</td>
<td>25%</td>
</tr>
<tr>
<td>Form factor</td>
<td>5%</td>
</tr>
<tr>
<td>Total uncertainty on signal</td>
<td>28%</td>
</tr>
<tr>
<td>Beam-on neutron background</td>
<td>25%</td>
</tr>
</tbody>
</table>
COHERENT, CsI results:

Likelihood analysis: 2D in energy (pe) and time

- best fit of data: 134 ± 22 CEvNS events
- SM prediction: 173 ± 48 CEvNS events
- Null hypothesis (=no CEvNS) rejected at 6.7σ
- consistent w/SM within 1σ
COHERENT, CsI results:

Likelihood analysis: 2D in energy (pe) and time

• best fit of data: 134 ± 22 CEvNS events
• SM prediction: 173 ± 48 CEvNS events
• Null hypothesis (=no CEvNS) rejected at 6.7σ
• consistent w/SM within 1σ

For more details:
COHERENT, CsI results:

Non-Standard Interactions (NSI) specific to neutrinos

- Simple one-bin analysis
- Assume all other ϵ’s zero

χ^2 fit results for current CsI data set: 90% allowed region

Also:

- NSI limits rel. to ν oscillations
eg: arXiv:1708.02899
- Vector portal DM
eg: arXiv:1710.10889

Expecting more with more precise data to come
COHERENT detectors

<table>
<thead>
<tr>
<th>nuclear target</th>
<th>technology</th>
<th>mass (kg)</th>
<th>source distance (m)</th>
<th>recoil threshold (keVr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsI[Na]</td>
<td>Scintillating crystal</td>
<td>14.6</td>
<td>19.3</td>
<td>6.5</td>
</tr>
<tr>
<td>Ge</td>
<td>HPGe PPC</td>
<td>6</td>
<td>22</td>
<td>0.6</td>
</tr>
<tr>
<td>LAr</td>
<td>Single-phase</td>
<td>22</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>NaI[Tl]</td>
<td>Scintillating crystal</td>
<td>185/2000</td>
<td>28</td>
<td>13</td>
</tr>
</tbody>
</table>

In next few years:
COHERENT detectors

<table>
<thead>
<tr>
<th>nuclear target</th>
<th>technology</th>
<th>mass (kg)</th>
<th>source distance (m)</th>
<th>recoil threshold (keVr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsI[Na]</td>
<td>Scintillating crystal</td>
<td>14.6</td>
<td>19.3</td>
<td>6.5</td>
</tr>
<tr>
<td>Ge</td>
<td>HPGe PPC</td>
<td>6</td>
<td>22</td>
<td>0.6</td>
</tr>
<tr>
<td>LAr</td>
<td>Single-phase</td>
<td>22</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>NaI[Tl]</td>
<td>Scintillating crystal</td>
<td>185/2000</td>
<td>28</td>
<td>13</td>
</tr>
</tbody>
</table>

Currently running Analysis in progress

SNS “ν-alley”
The CENNS-10 (LAr) Detector:

Specs:
- Built at FNAL, moved to ORNL Fall 16
- 22 kg LAr fiducial volume
- $2 \times$ Hamamatsu 8” PMTs
- TPB-coated PMTs/teflon side walls
- Energy threshold $\approx 20\text{keVnr}$
- Pb/Cu/H2O shield
- Running in current configuration since 7/17
- Expect ≈ 140 CEvNS events/SNS-year
The CENNS-10 (LAr) Detector

Spring17 data
• lower light yield, since upgraded
• Pre-shielding, will calibrate backgrounds
• ~0.5 PEs/keVee
7/17-current data:
- light yield improved to ~3-4 PE/keV
- PSD, threshold energy look adequate for confirmation of CEvNS with ^{40}Ar
Future for COHERENT

- 7/17 – current data should provide 1st CEvNS LAr signal
- Future data from Ge, NaI

- proposal in progress for larger detectors:
 - O(1 ton) liquid noble gas detector w/underground Ar
 - D\textsubscript{2}O for flux normalization

- .. for full physics of CEvNS.
Summary:

- First measurement of CEvNS in COHERENT CsI[Na] at the SNS!
- Potential physics output of CEvNS will drive further work on improved/larger detectors

Thanks to COHERENT collab for great work (and material for this talk!)
Backups
COHERENT experiment at SNS/ORNL

Measured n-fluxes:

- \(n \text{ flux } \approx 4.0 \times 10^{-5} \text{ n m}^{-2} \text{ spill}^{-1} \)
- about \(10^4 \) lower than Fermilab BNB with existing shielding
- and all prompt (in time with p beam)
COHERENT, CsI data analysis:

Neutron backgrounds:

- Evaluated using EJ-301 liquid scintillator cell deployed inside CsI shielding before CsI deployment
- Consistent with Geant4 simulation for SNS production & shielding

Expect: 0.93 ± 0.23 beam n events/GWhr
0.54 ± 0.18 NIN events/GWhr

$\Rightarrow \sim 11$ neutron events in CsI dataset

NINs: non-zero component at 2.9σ
(factor ~ 1.7 lower than prediction)
The CENNS-10 detector

timeline:
• (‘12-’15) built at Fermilab for CENNS@Fermilab effort led by J. Yoo (now at KAIST) along with: A. Lathrop, R. Flores, R. Schmidt, E. Voirin, D. Markley, R. Davila, D. Butler, L. Harbacek

• (2015) moved to Indiana U. for commissioning, upgrades, neutron tests

• (2016) installed at SNS for COHERENT
The CENNS-10 (LAr) Detector:

CENNS-10 SNS timeline:
- 10-12/2016: (re)build detector at SNS
- 12/16, 3-5/17: run with TPB-acrylic parts, $E_{\text{thresh}} \sim 100\text{keVnr}$
 - “Spring17” data:
 - CEvNS measurement not possible, will constrain beam-related bckgrds
- 6/17: upgrade: TPB-Teflon reflectors, new TPB-coated PMTs, added 4” Pb shielding
- 7/17-12/17: ran in upgraded mode, $E_{\text{thresh}} \sim 20\text{keVnr}$
 - “Summer17” data:
 - 2.8GWhr collected
^{39}Ar in Spring ‘17 data:

- from CENNS-10, stage 1 config: TPB-acrylic sides, no Pb shielding, beam-off (lower 511keV γ rate)
- background-collection threshold \sim100 keVee
- \sim0.5 PE/keV \Rightarrow E threshold \sim 80keVnr
- comparison to expected rates from environmental γ measurements + 1 Bq/kg ^{39}Ar + detector/shielding MC, very good agreement to expected
- fit with background allowed to float \Rightarrow 1 Bq/kg ^{39}Ar \pm 10%
\(^{39}\)Ar in Summer ‘17 data:

- from CENNS-10, upgraded config: TPB-Teflon sides, full Pb shielding, beam-off
- background-collection threshold \sim20 keVee
- \sim3 PE/keV \Rightarrow E threshold \sim 20keVnr
- observed spectrum consistent with \sim1 Bq/kg, negligible envir. γ rate
- energy calibration, MC tuning, etc in progress
39Ar in Summer ‘17 data:

- PSD separates 39Ar from CEvNS signal
- initial simulations show that separation is adequate and 39Ar background can be completely suppressed.
- However, real events may prove more challenging and we are currently understanding that in the data
^{39}Ar in CEvNS data:

Some (rough) rate calculations:

- 100 CEvNS events/ SNS yr in 20kg with 20 keVnr threshold
- beam-on livetime = 200 mins (10µs window x 60 Hz)
- 1Bq/kg ^{39}Ar \Rightarrow 240k events in 1 SNS-yr
 ~50k in ROI (20-200 PE)
- reduce to 500 evs backgnd (as with CsI data set)
- then PSD requirements are:
 - atmos. Ar: 1% leakage
 - underground Ar w/20x reduction, 20% leakage allowed
 - if 100x ^{39}Ar suppression, then S:B = 5:1 before any PSD
- A powerful improvement, esp with larger detectors!
DM sensitivities with CsI in COHERENT

Fig. 3: The COHERENT bounds derived in this work in the context of other bounds on DM interacting with a kinetically mixed dark photon. See Sec. 5 for a description of these additional bounds. Additional bounds can be found in [29]. The left and right panels take $m_{\gamma'} = 3 m_X$ and $m_{\gamma'} = 10 m_X$ respectively.