

First Results from a CEvNS Search with the CENNS-10 Liquid Argon Detector 2018 APS DNP Meeting

M. R. Heath (On behalf of the COHERENT Collaboration)

Indiana University

October 24, 2018

Liquid Argon

Why LAr

- Complementary to heavier Cs and I
 - Map out low N σ_{CEVNS}
 - Lower σ but more energetic recoils
- Large scintillation yield
 - 40 $\gamma/{
 m keVee}$
- Quenching factor well measured
- Pulse Shape Discrimination!
 - Argon scintillates with 2 time constants
 - 1. Singlet light: ~6 ns
 - 2. Triplet light: ~1.6 µs
 - Electronic Recoils mostly triplet light
 - Nuclear Recoils mostly singlet light

Self-trapped exciton luminescence

⁰Scint. Diagram courtesy of B. Jones Introduction to Scintillation Light in Liquid Argon

CENNS-10 Detector

Specs

- Single phase liquid argon detector
- 2x Hamamatsu R5912-20 PMTs
- Caen 1720 digitizer
 - 12 bit, 250 MS/s
- PT90 cold head
- Saes MonoTorr gas purifier
- Running at SNS 2016-present
 - "Engineering Run": This talk
 - "Production Run": Light collection upgrade, add'l shielding
 - Analysis in progress, stay tuned

Run Summary

- 29 kg fiducial volume
- Tetraphenyl butadiene (TPB) coated acrylic cylinder backed by teflon
- TPB coated acrylic disks in front of PMTs
- Water, Cu shielding
- $\cdot\,$ 1.5 GWh (3.5 $\times\,10^{22}$ pot) full shielded config.
- Light collection upgrade Summer 2017
 - \rightarrow Production Run

Detector Characterization

- Weekly calibration runs
 - LED for SPE calibration
 - ¹³⁷Cs for light yield calibration
- Monthly ²⁵²Cf source for nuclear/electronic recoil discrimination
- Light yield 0.5 PEs/keVee
 - Much improved for Production Running!

Cuts

- General waveform quality cuts: no saturation, valid baseline...
 - > 99 % waveforms pass
- Event specific cuts: pileup, pre-trace...
 - > 98 % events pass
- Beam related events: PSD

Beam Related Backgrounds

Neutrons

- BRNs cause nuclear recoils in time with the beam
 - Mimic CEvNS signal!
- SciBath neutron measurement in LAr location Fall 2015
- + Prompt fast neutron flux ((5-30) MeV): (2.1 \pm 0.4) \times 10 $^{-5}$ n/m²/µs/MW
 - Limit > 30 MeV flux
- \cdot Delayed fast neutron flux consistent with 0
 - Evidence for thermal neutron captures

Beam Trigger Configuration

- Beam triggers divided into 3 regions:
 - 1. 'Pre-beam': characterize beam unrelated bkgs (BUBs)
 - 2. 'Prompt': $1\,\mu s$ centered on beam: BUBs + Beam Related Neutrons + CEvNS
 - 3. 'Delayed': 3 µs window post-beam: BUBs + CEvNS
- Add'l strobe trigger
 - Strobe triggers further characterize beam unrelated bkgs (BUBs)

No Shielding Neutron Run

- Minimal shielding run to further characterize 'Neutrino Alley' neutron flux
- 2 weeks of data
- \cdot Excess of (61 \pm 12) events with PSD cut
- Delayed flux consistent with zero
 - (-18 ± 23) events

Full Shielding Predictions

- + Addition of 20.3 cm H_2O and 1.27 cm Cu
- 2 analyses:
 - 1. Counting exp't: cut in PSD/energy/time and count events
 - Both prompt (0.4 $< t_{POT} <$ 1.4 $\mu s)$ and delayed (1.4 $< t_{POT} <$ 4.4 $\mu s)$
 - 2. Likelihood fit in energy/psd/time space

	Engineering Run Prediction		
	BUB	BRN	CEvNS
Total (< 700 keVee)	$5.8 \times 10^{5} \mu s^{-1}$	800	6.8
Prompt Count. Exp't < 700 keVee	87	133	0.3
Prompt Count. Exp't < 30 keVee	3.4	8.9	0.2
Del. Count. Exp't $<$ 700 keVee	261	< 1	0.7
Del. Count. Exp't $<$ 30 keVee	10.2	< 1	0.5

Production Run

- Light collection upgrade Summer 2017
 - TPB coated teflon walls, PMTs
 - 22 kg fiducial volume
 - ~4.5 PEs/keVee!
- Add'l lead shielding
- 6.2 GWh expected
- Initial low energy Kr^{83m} results promising!

Production Run

Expected Sensitivity

- Threshold ~20 keVnr
- Major beam unrelated background ³⁹Ar
 ~1 Bakg⁻¹
- Initial MC estimates indicate ³⁹Ar/CEvNS separation adequate
 - Expect ~100 CEvNS events Production Run
 - BRN predictions (all prompt) in progress
 - Tuning MC to better match calibration data

Summary

- Engineering Run results soon
 - Beam related neuton rates constrained with no shielding
 - 'Full shielding' results any day
 - Neutron flux informs production run background predictions
 - CEvNS limit from likelihood analysis
- CENNS-10 taking data
 - Production Run analysis underway!
 - Stay tuned!

LaurentianUniversity UniversitéLaurentienne **CAK RIDGE**

Backups

COHERENT

Coherent Elastic Neutrino Nucleus Scattering

- Neutrino collides with large nucleus which recoils coherently
 - $E_{\nu} \lesssim \frac{hc}{R_N} \approx 50 \,\mathrm{MeV}$
- Small recoil energy

$$- E_r^{max} \lesssim \frac{2E_{\nu}^2}{M_N} \simeq 50 \text{ keV}$$

- Difficult to detect
- Deploy a suite of detectors to measure N^2 cross section dependence
 - Csl¹, Ar, Nal, Ge

¹DOI:10.1126/science.aao0990

SPE Spectrum

Channel 1 (Voltage 1475)

Event Quality Cuts

Steady State Backgrounds

- \cdot ³⁹Ar, 511 γ s, wall + floor gammas dominate
- Bkg calibration runs give ³⁹Ar, wall + floor rates
- + 511 γ s from beam on strobe triggers
 - From beam exhaust pipe
- ~1.9 kHz steady state bkg rate

No Shielding Delayed Residual

Triplet Lifetime

Post-Doping Channel1 ⁰ ⁰ ¹⁰ ¹

Time to Trigger (us)

- As data quality check introduce $N_{\rm 2}$ after spring run
 - ~25 ppm
- + Triplet lifetime changed from ~1.2 μs to 0.2 μs
 - Roughly 1 ppm and 20 ppm respectively 2

²arXiv:0804.1217 [nucl-ex]

N2 Contamination

²arXiv:0804.1217 [nucl-ex]

AmBe

⁵⁷Co