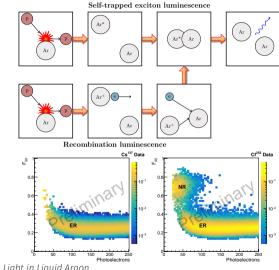


Results from a CEvNS Search with the CENNS-10 Liquid Argon Detector

2019 APS April Meeting

M. R. Heath (On behalf of the COHERENT Collaboration)

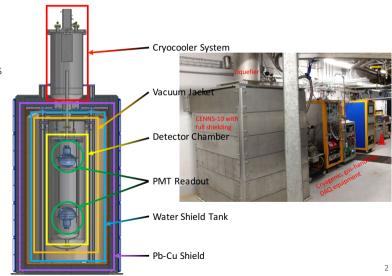

Indiana University

April 14, 2019

Liquid Argon

Why LAr

- · Complementary to heavier Cs and I
 - Map out low N σ_{CEVNS}
 - Lower σ but more energetic recoils
- · Large scintillation yield
 - $40 \gamma/\text{keVee}$
- · Quenching factor well measured
- · Pulse Shape Discrimination (PSD)!
 - Argon scintillates with 2 time constants
 - 1. Singlet light: ~6 ns
 - 2. Triplet light: ~1.6 μs
 - Electronic Recoils mostly triplet light
 - Nuclear Recoils mostly singlet light

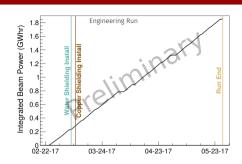

⁰Scint. diagram based on B. Jones Introduction to Scintillation Light in Liquid Argon

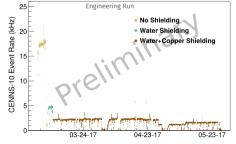
1

CENNS-10 Detector

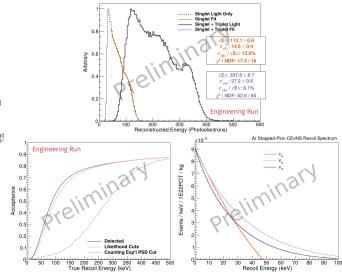
Specs

- Single-phase liquid argon detector
 - Constructed at FNAL
- · 2x Hamamatsu R5912-20 PMTs
- Caen 1720 digitizer
 - 12 bit, 250 MS/s
- · PT90 cold head
- Saes MonoTorr gas purifier
- · Running at SNS 2016-present
 - "Engineering Run": This talk
 - "Production Run": Light collection upgrade, add'l shielding
 - Analysis in progress, stay tuned


Run Summary

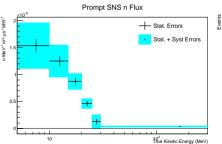

- · 29 kg fiducial volume
- Tetraphenyl butadiene (TPB) coated acrylic cylinder backed by teflon
- TPB coated acrylic disks in front of PMTs
- · Water, Cu shielding
- 1.5 GWh (3.5 \times 10²² pot) full shielded config.
- · Light collection upgrade Summer 2017

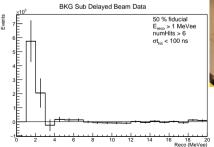
→ Production Run



Detector Characterization

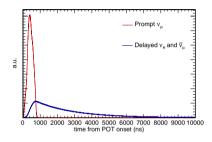
- Weekly calibration runs
 - LED for SPE calibration
 - ¹³⁷Cs for light yield calibration
- Monthly ²⁵²Cf source for nuclear/electronic recoil discrimination
- · Light yield 0.55 PEs/keVee
 - Much improved for Production Running!

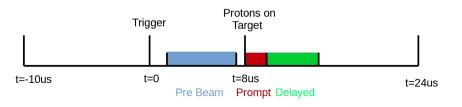

Cuts


- General waveform quality cuts: no saturation, valid baseline...
 - > 99 % waveforms pass
- Event specific cuts: pileup, pre-trace...
 - $-~>98\,\%$ events pass
- Beam-related events: PSD

Beam-Related Backgrounds: Fast Neutrons

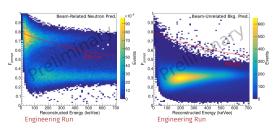
- BRNs cause nuclear recoils in time with the beam
 - Mimic CEvNS signal!
- · SciBath neutron measurement in LAr location Fall 2015
- Prompt fast neutron flux ((5-30) MeV): $(2.1 \pm 0.4) \times 10^{-5} \text{ n/m}^2/\mu\text{s/MW}$
 - Limit > 30 MeV flux
- · Delayed fast neutron flux consistent with 0
 - Evidence for thermal neutron captures

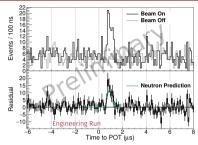




IU SciBath Detector

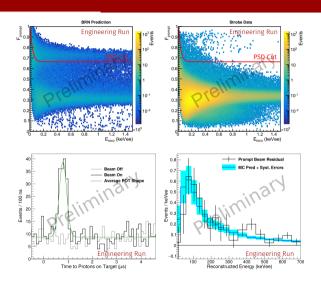
CEVNS Analysis Outline


- Characterize expected backgrounds
 - Steady-state bkg from beam-off triggers
 - Beam-related neutrons from SciBath measurement, CENNS-10 no shielding run
- Finalize energy/psd/time cuts
- Verify bkg subtraction with 'pre-beam' data
- · 'Box Opening:'
 - 1. Counting exp't: prompt and delayed
 - 2. Full likelihood analysis



No-Shielding Neutron Run

- Minimal shielding run to further characterize 'Neutrino Alley' neutron flux
- · 2 weeks of data
- \cdot Excess of (61 \pm 12) events with PSD cut
- Delayed flux consistent with zero (-18 ± 23) events

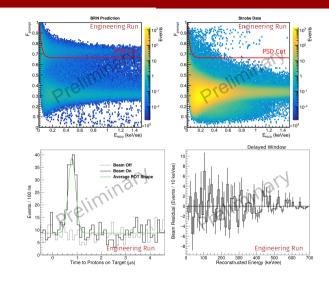


Full Shielding Analysis

- Addition of 20.3 cm H_2O and 1.27 cm Cu
- 2 analysis methods:
 - Counting exp't: cut in PSD/energy/time and count events
 - Prompt excess consistent with neutron prediction
 - $\cdot \chi^2/N_{bins}: 13.7/18$

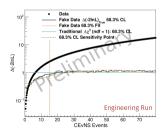
	Steady-State Backgrounds	Beam-Related Neutrons	CEvNS
Neutron Count. Exp't	88	123	0.2
CEvNS Count. Exp't	10.3	< 1	0.5
Likelihood	5200	143	3.9

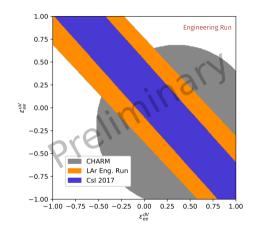
Engineering Run Event Rate Predictions



Full Shielding Analysis

- Addition of 20.3 cm H_2O and 1.27 cm Cu
- · 2 analysis methods:
 - Counting exp't: cut in PSD/energy/time and count events
 - No indication of neutrons/CEvNS in delayed window
 - Cross section limit: $\sigma_{CEVNS}^{Ar} < 150 \times 10^{-40} \text{ cm}^2$ ~8.6 x SM prediction


	Steady-State Backgrounds	Beam-Related Neutrons	CEvNS
Neutron Count. Exp't	88	123	0.2
CEvNS Count. Exp't	10.3	< 1	0.5
Likelihood	5200	143	3.9


Engineering Run Event Rate Predictions

Full Shielding Analysis

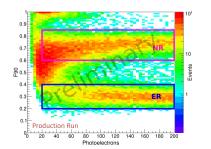
- · 2 analysis methods:
 - 1. Counting expit
 - 2. Full likelihood analysis
 - Full 3D likelihood fit in energy/time/PSD with wider cuts
 No CEvNS excess:
 ^{Ar}_{CEVNS} < 24 × 10⁻⁴⁰ cm² (68.3 % CL) following Feldman-Cousins
 - Non-standard interactions constraints¹

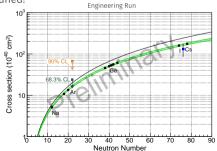
¹To appear in M. R. Heath, IU Thesis

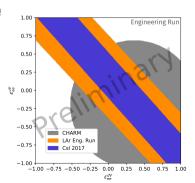
Production Run

CENNS-10 Production Run

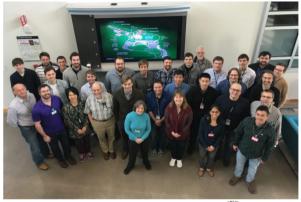
- Light collection upgrade Summer 2017
 - TPB-coated teflon, PMTs
 - 4.3 PEs/keVee(~20 keVnr thresh.)!
- · Add'l shielding installed
- Low-energy ^{83m}Kr results promising!
- · Results soon!
 - 6.1 GWh (1.5 \times 10²³ pot)


	Steady-State Background	Beam-Related Neutrons	CEvNS	
Prompt	264	298	53	
Delayed	924	< 1	67	
Production Run Event Predictions				





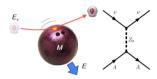
Summary

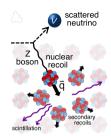

- Results from LAr detector Engineering Run!²
 - Confirm all beam-related neutrons prompt and can be predicted
 - CEvNS limit from likelihood analysis
 - · Confirm CsI NSI results even with high threshold, high bkg rate, and short run time
- · CENNS-10 taking data
 - Production Run results soon!
 - · Lower threshold, lower bkg rates, longer exposure time!

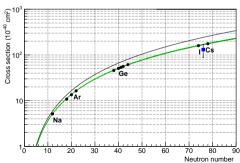
- Stay tuned! Enginee

(COHERENT

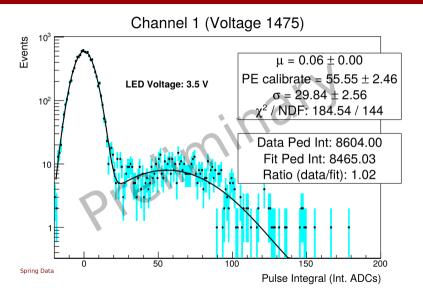
Carnegie Mellon University

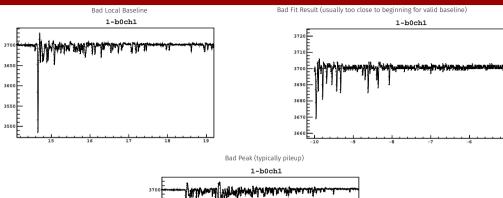


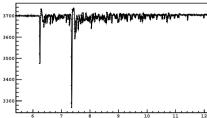

Coherent Elastic Neutrino Nucleus Scattering


- · Neutrino collides with large nucleus which recoils coherently
 - $-E_{\nu} \lesssim \frac{hc}{R_N} \approx 50 \,\mathrm{MeV}$
- · Small recoil energy

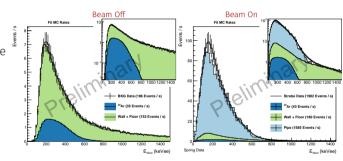
$$-E_r^{max} \lesssim \frac{2E_{\nu}^2}{M_N} \simeq 50 \text{ keV}$$

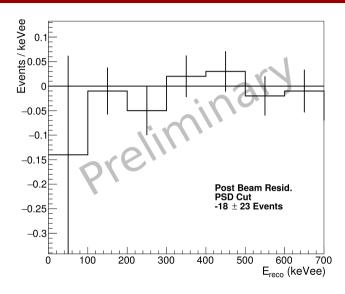

- Difficult to detect
- Deploy a suite of detectors to measure N² cross section dependence
 - Csl¹, Ar, Nal, Ge



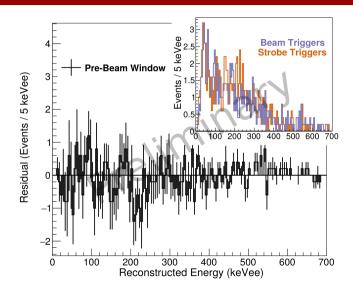


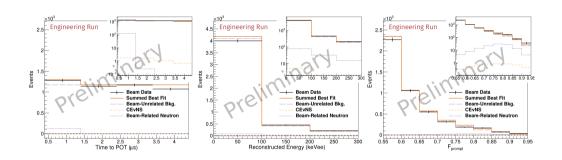
¹DOI:10.1126/science.aao0990


Event Quality Cuts



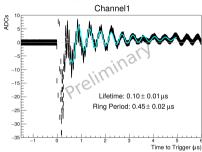
Steady State Backgrounds


- 39 Ar, 511 γ s, wall + floor gammas dominate
- Bkg calibration runs give ³⁹Ar, wall + floor rates
- 511 γ s from beam on strobe triggers
 - From beam exhaust pipe
- · ~1.9 kHz steady state bkg rate

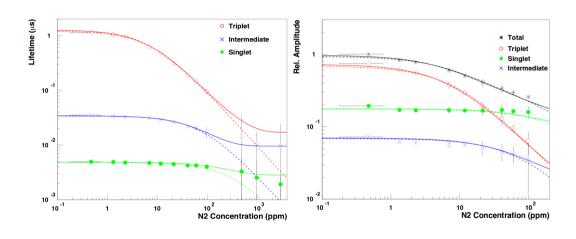

No-Shielding Delayed Residual

Full-Shielding Pre-Beam Residual

Likelihood Fit Results


Triplet Lifetime

Pre-Doping


- As data quality check introduce $\ensuremath{N_2}$ after spring run
 - ~25 ppm
- \cdot Triplet lifetime changed from ~1.2 μs to 0.2 μs
 - Roughly 1 ppm and 20 ppm respectively²

Post-Doping

²arXiv:0804.1217 [nucl-ex]

N2 Contamination

²arXiv:0804.1217 [nucl-ex]