

The COHERENT collaboration and its first observation of CEvNS

Ivan Tolstukhin

(Indiana University)

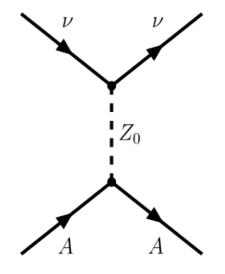
For the COHERENT collaboration

Coherent Elastic Neutrino-Nucleus Scattering - CEvNS

NC (flavor independent) process
predicted in 1974 by D. Freedman and

- Neutrino scatters off via exchange a Zboson (vA → vA)
 - Nucleus recoils as a whole

V. Kopeliovich [1, 2]


- Low momentum transfer, $\lambda_z = 1/q < R_N$
- Identical initial and final states
- Coherent up to E_v ~ 50 MeV
- Enhanced cross-section for heavy nuclei!

PHYSICAL REVIEW D VOLUME 9, NUMBER 5 1 MARCH 1974

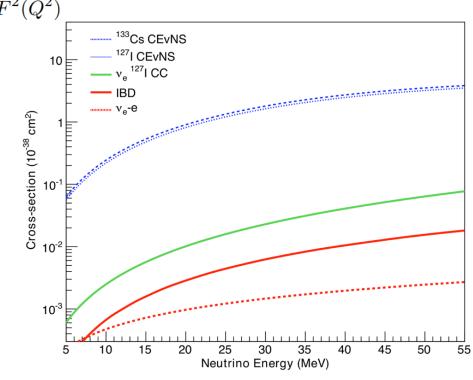
Coherent effects of a weak neutral current

Daniel Z. Freedman†

National Accelerator Laboratory, Batavia, Illinois 60510
and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790
(Received 15 October 1973; revised manuscript received 19 November 1973)

- [1] D.Z. Freedman, Phys Rev D 9 (1974)
- [2] V.B.Kopeliovich & L.L.Frankfurt JETP Lett. 19 (1974)

Coherent Elastic Neutrino-Nucleus Scattering - CEvNS

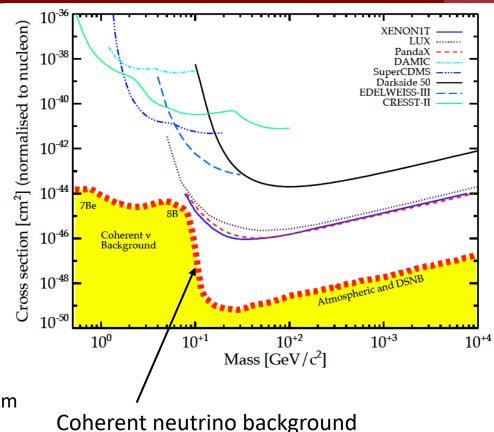

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

- Standard Model calculation
 - Dependence on neutron number

$$\sigma \approx \frac{G_F^2 N^2}{4 \, \pi}$$

- Largest of all Standard Model lowenergy neutrino interaction crosssections
- Experimental signature nuclear recoil
 - Low energy signals

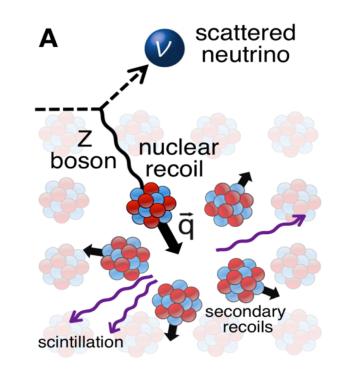
$$E_r^{\rm max} \simeq \frac{2E_\nu^2}{M} \simeq 50 \text{ keV}$$



[1] D.Z. Freedman, Phys Rev D 9 (1974)

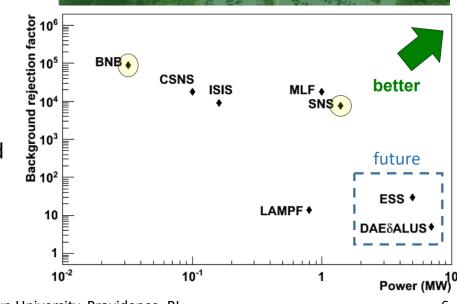
Physics from CEvNS

- Standard model tests
 - Proton weak charge ($\sin^2(\theta_{w})$)
 - Nuclear form factors
 - Non-standard interactions of neutrinos
 - Neutrino magnetic moment
- Supernova Neutrino detection channel
- **Reactor Monitoring**
- Dark Matter (DM)
 - Accelerator DM search with O(1 ton) **CEVNS** detector
 - CEvNS is important background for next generation of a ton-scale direct searches
 - Will begin to be sensitive CEVNS from ⁸B solar neutrino flux



Experimental challenges and COHERENT program

- Experimental signature is a low-energy recoiling nucleus
 - Heavier nuclei: higher cross section but lower recoil energies
 - Nuclear recoil signal yields are quenched
 - Need to calibrate detector performance at lowenergy
- Very sensitive detectors are very sensitive to backgrounds
 - Low energy neutrons in the detectors can produce similar recoil spectra as neutrino scattering signal



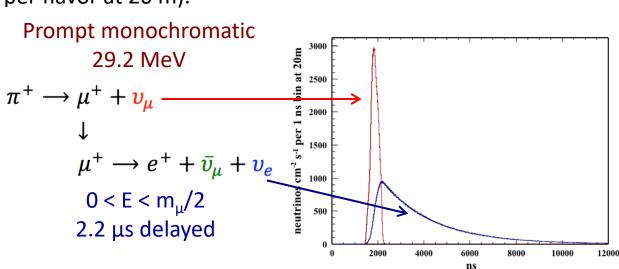
COHERENT program

Ψ

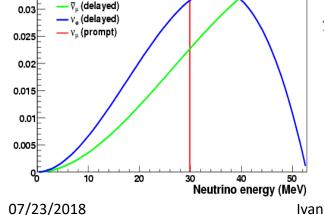
- Goal: unambiguous observation and study of CEvNS
- Neutrino source
 - pulsed proton beam on a mercury target at the ORNL Spallation Neutron Source (SNS)
- Several nuclear targets / detector technologies for N² dependence
 - low threshold detectors
- Well characterized and reduced background
- Pioneering CEvNS detector: CsI[Na]
- https://coherent.ornl.gov

Spallation Neutron Source (SNS) at Oak Ridge

Capture

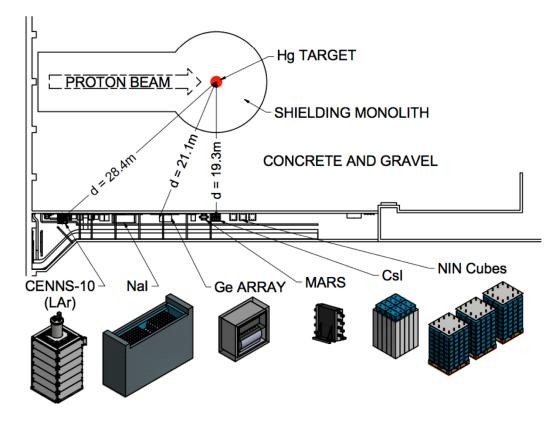

τ≈2200 ns

 $\tau \approx 26 \text{ ns}$

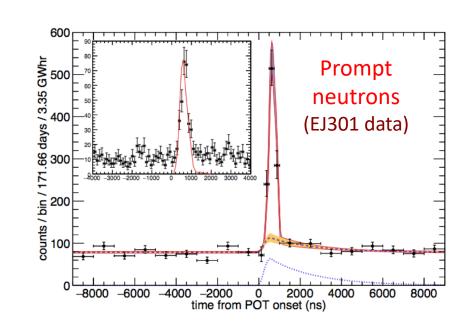

Pulsed Proton Beam

¥0.035

- ~1 MW power
- 60 Hz, 600 ns spill
- Pulsing allows natural background rejection for factor ~ 10⁴
- Proton collisions with mercury create neutrons and neutrinos (~ 10⁷ cm⁻²s⁻¹ per flavor at 20 m).

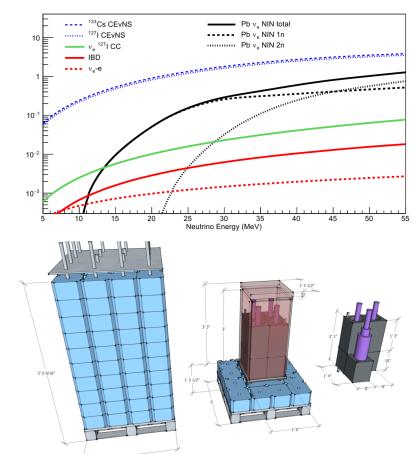

Hg

COHERENT Detectors siting and Backgrounds


- Background depends on siting at the SNS target building
 - "Neutrino alley"
 - Detectors located at SNS basement
 - ~ 8 m.w.e. overburden
 - Reduction of the CR backgrounds
 - ~20 29 m of gravel and concrete in the direction to target
 - "prompt" neutron flux reduction
 - Background measurements were performed at different locations with different detector technologies

"Prompt" Neutron Background

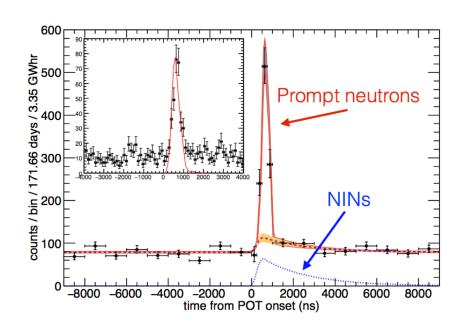
- 100 keV 1 MeV neutrons can produce similar signal
- Neuron flux measured at different positions with multiple detector technologies w/o shielding:
 - Sandia Scatter Camera multiplane liquid scintillator
 - SciBath WLS fiber + liquid scintillator
 - MARS sandwiched plastic scintillator/Gd sheets
- Prompt neutron flux ~10⁻⁷ neutrons/cm²/s
- Expected rates in detector below CEvNS signal



Background - Neutrino induced neutrons

Neutrino induced neutrons (NINs) coincident with the CEnNS signal:

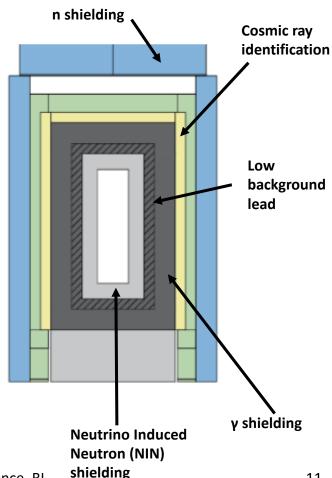
- Never been observed
- Produced by neutrinos in Pb shield [1]
 - requires careful shielding design.
- Cross section is poorly known. NIN is a signal in the HALO experiment to detect Supernovae neutrinos [2].


- [1] E. Kolbe, E. Langanke, Phys. Rev. C63 (2001)
- [2] C.A. Duba et al. J. Phys. Conf. Series 136 (2008)

Background - Neutrino induced neutrons

Neutrino induced neutrons (NINs) coincident with the CEnNS signal:

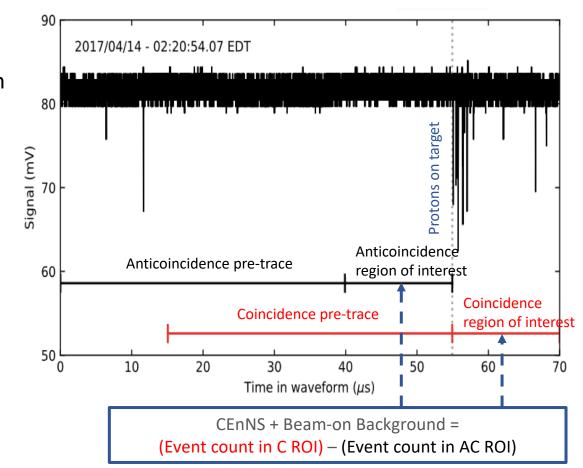
- Never been observed
- Produced by neutrinos in Pb shield [1]
 - requires careful shielding design.
- Cross section is poorly known. NIN is a signal in the HALO experiment to detect Supernovae neutrinos [2].
- COHERENT program with Lead (1 ton) and Iron (700 kg) and Cu targets to measure NINs (for background evaluation) and their production cross section (as a physics measurement).


First indication of NINs detection (1.7 times below theory prediction)

[1] - E. Kolbe, E. Langanke, Phys. Rev. C63 (2001)[2] - C.A. Duba et al. J. Phys. Conf. Series 136 (2008)

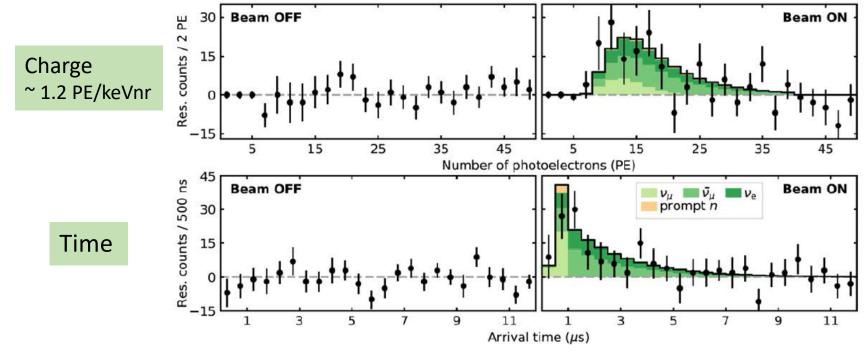
Detector Subsystem – Csl[Na]

- 14.6 kg sodium doped CsI inorganic crystal
 - electroformed-copper can
 - PTFE reflector and synthetic silica window
- High light yield
- Low intrinsic background
- Room temperature operation
- Deployed at the SNS "neutrino-alley" in 2015
 - 1.76x10²³ POT delivered to CsI (7.48 GWhr)



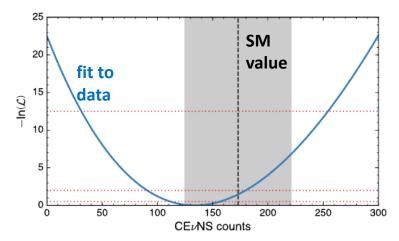
Detector Subsystem - Csl

- Super-bialkali PMT Hamamatsu R877-100 with ~30% QE
- Recording of 70 µs waveforms with 500 MHz sampling of CsI and veto channels
- ~ 2x10⁹ waveforms were recorded
- 2 independent analyses with slightly different cut:
 - count beam-on low-energy events (nuclear recoils)
 - subtract steady state backgrounds from beam-off data
 - measure/subtract beam-related backgrounds (neutrons)



First CEvNS observation

Data points are the **residuals** between CsI[Na] signals in the 12 ms following POT triggers and the 12 ms before:


- Beam OFF: 153.5 live-days
- Beam ON: 308.1 live-days, 7.48 GWhr onto the SNS target

First CEvNS results

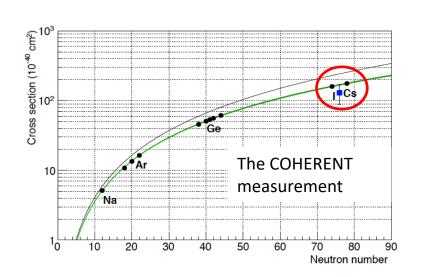
Ф

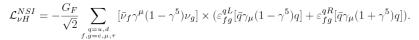
- 2D-profile likelihood analysis
 - 134 ± 22 observed events [1]
- Standard model prediction 173 ± 48 events
 - Agreement with the SM prediction to within 1σ
- No CEvNS rejected at 6.7σ

Beam ON coincidence window	547 counts		
Anticoincidence window	405 counts		
Beam-on bg: prompt beam neutrons	7.0 ± 1.7		
Beam-on bg: NINs (neglected)	4.0 ± 1.3		
Signal counts, single-bin counting	136 ± 31		
Signal counts, 2D likelihood fit	134 ± 22		
Predicted SM signal counts	173 ± 48		

$6 \le PE \le 30, 0 \le t \le 6000 \text{ ns}$

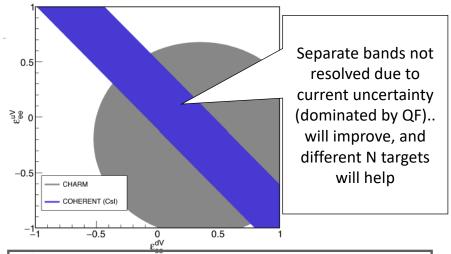
Uncertainties on signal and background predictions				
Event selection	5%			
Flux	10%			
Quenching factor	25%			
Form factor	5%			
Total uncertainty on signal	28%			
Beam-on neutron background	25%			


 Data package that constituted CEvNS observation is publicly available: https://zenodo.org/record/1228631


[1] D. Akimov et al., Science (2017)

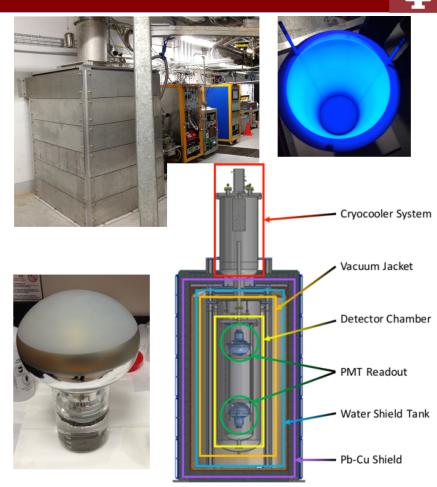
Csl[Na]results

Ψ


- 2D-profile likelihood analysis
 - 134 ± 22 observed events [1]
- Standard model prediction 173 ± 48 events
 - Agreement with the SM prediction to within 1σ
- No CEvNS rejected at 6.7σ
- consistent w/SM within 1s

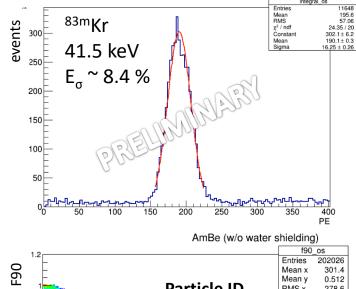
New constraints on NSIs for M≥10 MeV

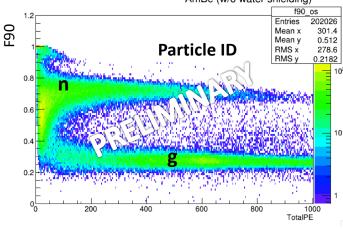
- Simple one-bin analysis
- Considering only ε_{ee}^{uV} , ε_{ee}^{dV} to have non-zero values



Additional statistics and more complicated analysis to come

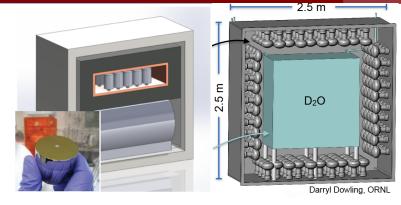
LAr for COHERENT

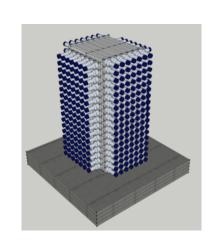

- CENNS-10 detector
 - Single-phase
 - 2x 8" Hamamatsu R5912-MOD02 PMTs
 - Wavelength shifter tetraphenyl butadiene (TPB) coated Teflon side walls and PMTs
 - ~ 22 kg fiducial volume
 - ~ 20 keVnr energy threshold
- Installed at SNS late 2016 ("Run0")
- Upgraded in June 2017 to improve light collection capabilities (Run1", ended May-18)
 - Full shielding operation (8" H₂O, ¼" Cu, 4" Pb)
- Next to provide CEvNS cross-section

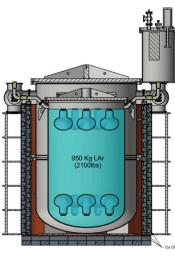


LAr for COHERENT

Ψ

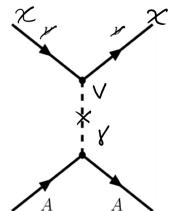

- CENNS-10 detector
 - 2x Hamamatsu R5912-MOD02 PMTs
 - Wavelength shifter tetraphenyl butadiene (TPB) coated Teflon side walls
 - ~ 22 kg fiducial volume
 - ~ 20 keVnr energy threshold
- ~4.5 pe/keV light yield
- Low-energy ^{83m}Kr source calibration
- Expect ~ 140 CEvNS/SNS-year





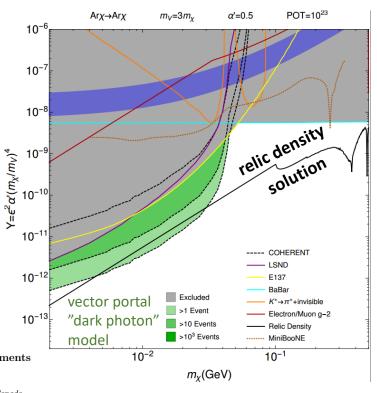
Future COHERENT

- Current data should provide first CEvNS LAr signal
- Double statistics with CsI[Na] by the end of the calendar year
- Improved background, neutrino induced neutron studies
- Future data from Ge and NaI[TI] 2-ton CEvNS sensitive upgrade
- Precision CEvNS measurement
- Proposal in progress for larger detectors:
 - D₂O for flux normalization
 - O(1 ton) liquid noble gas detector w/underground Ar


Future COHERENT – Physics

Search for accelerator-produced, low-mass, dark matter

• Via: $p \to \mathrm{Hg} \to \pi^{0,\pm}$

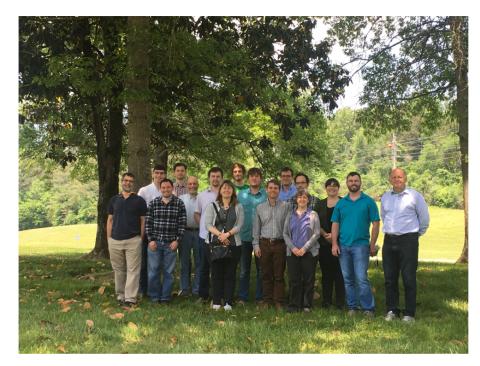

$$\pi^0 \longrightarrow \gamma + V^{(*)} \longrightarrow \gamma + \chi^{\dagger} + \chi$$

Light new physics in coherent neutrino-nucleus scattering experiments

Patrick deNiverville, Maxim Pospelov, 1,2 and Adam Ritz 1

1 ton-year LAr – SNS DM sensitivity

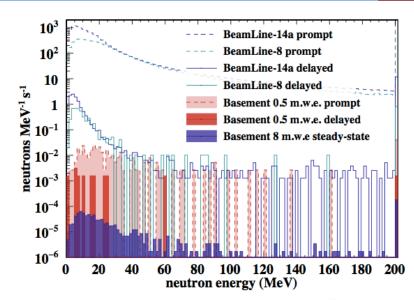
arXiv:1505.07805


¹Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada ²Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9, Canada (Dated: May 2015)

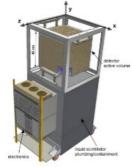
Summary

- Search for CEvNS at SNS and measure the coherent neutrino-nucleus cross section in multiple nuclei
- SNS is a great source for a CEvNS measurement due to pulsed beam and beam power
- First CEvNS observation in CsI[Na] (August 2017) made by COHERENT collaboration
- Multiple target material detectors (NaI[TI], LAr, Ge) taking data and under development to show N² dependence. Other target materials under consideration for feasibility.
- Working towards ton-scale detectors for future physics reach

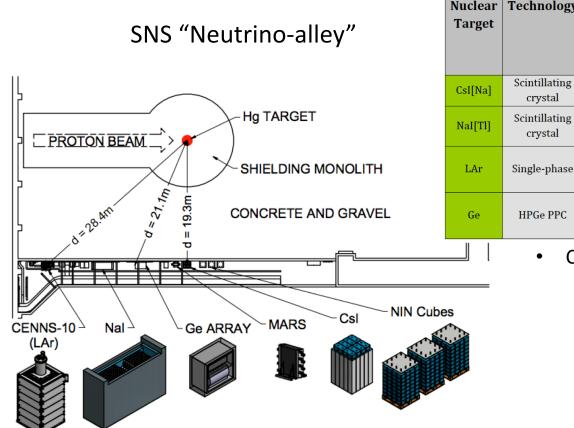
COHERENT collaboration


~80 members, 18 institutions 4 countries

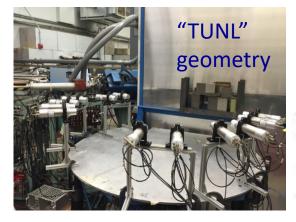
Backup


Neutron Background

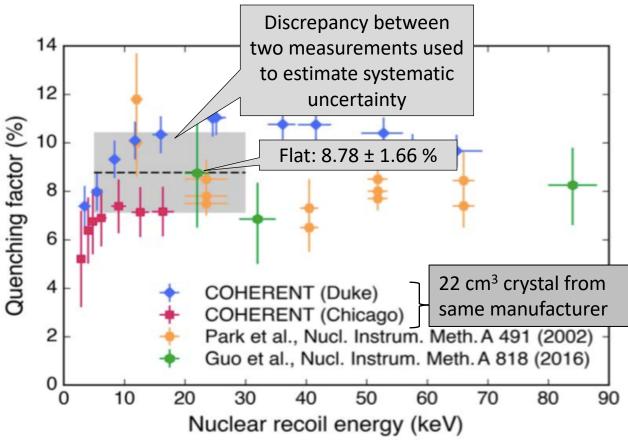
- 100 keV 1 MeV neutrons can produce similar signal
- Neuron flux measured at different positions with multiple detector technologies:
 - Sandia Scatter Camera multiplane liquid scintillator
 - SciBath WLS fiber + liquid scintillator
- Low neutron background in the SNS basement
- Prompt neutron flux ~10⁻⁷ neutrons/cm²/s
- Expected rates in detector below CEvNS signal



COHERENT Detectors siting



Nuclear Target	Technology	Mass (kg)	from source (m)	Recoil threshold (keVr)	Start data- taking	Possible Future
CsI[Na]	Scintillating crystal	14.6	20	6.5	09/2015	Continue data-taking
NaI[Tl]	Scintillating crystal	185* /2000	28	13	*high-threshold deployment summer 2016	Expansion to 2 tonne
LAr	Single-phase	22	29	20	12/2016, Upgraded 07/2017	Expansion to ~ 1 tonne scale
Ge	HPGe PPC	10	22	5	2018	Ge expansion w/lower threshold


- COHERENT non-CEVNS detectors
 - Neutron background
 - Sandia Neutron Scatter Camera (deployed 2014-2016)
 - SciBath (deployed 2015)
 - MARS (deployed 2017 now)
 - Neutrino induced neutron
 - Lead Nube (see G08.08 talk)
 - Iron Nube

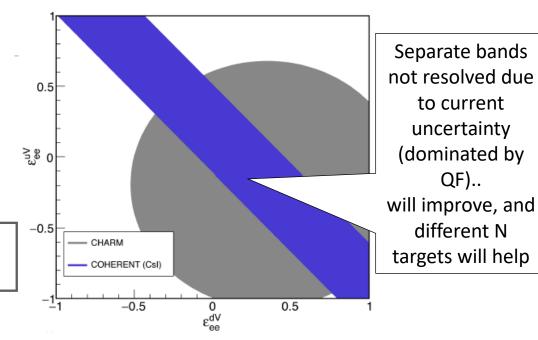
CsI[Na] – Quenching factor measurements

- Elastically scatter neutrons into "backing detectors" at known angles, corresponding to welldefined recoil energies
- Disagreement between COHERENT measurements under (re)analysis

CEVNS and **NSI**

to current uncertainty

QF)..

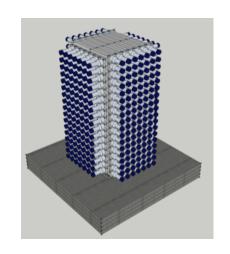

different N

Model independent parameterization of NS contributions to v-q interactions

$$\mathcal{L}_{\nu H}^{NSI} = -\frac{G_F}{\sqrt{2}} \sum_{\substack{q=u,d}} \left[\bar{\nu}_f \gamma^\mu (1-\gamma^5) \nu_g \right] \times \left(\varepsilon_{fg}^{qL} [\bar{q} \gamma_\mu (1-\gamma^5) q] + \varepsilon_{fg}^{qR} [\bar{q} \gamma_\mu (1+\gamma^5) q] \right).$$

- Considering only ε_{ee}^{uV} , ε_{ee}^{dV} to have non-zero values
- First result put constraints on nonuniversal interactions

Additional statistics and more complicated analysis to come


NaI[TI] for COHERENT

- Thallium doped sodium iodide scintillating inorganic crystal
 - Scintillation process very similar to CsI scintillation
- Currently 185 kg total
 - 24 7.7 kg detectors

- Being used for a different neutrino measurement
 - Charged current interaction on ¹²⁷I
- Background characterization for tonscale upgrade

