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Coherent elastic neutrino-nucleus scattering (CE𝜈NS)
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Cross section can be orders of magnitude larger 
than IBD process used to first observe neutrinos!

• NC (flavor-independent) process 
postulated by D.Z. Freedman [1] / 
Kopeliovich & Frankfurt [2] in 1974 

• In a CE𝜈NS interaction, a neutrino 
scatters off of a nucleus whose 
nucleons recoil in phase, resulting 
in an enhanced cross section; total 
cross section scales 
approximately like N2

[1] D.Z. Freedman, Phys. Rev. D 9 (1974) 
[2] V.B. Kopeliovich and L.L. Frankfurt, ZhETF Pis. Red. 19 (1974)
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“An act of hubris”
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Freedman [1] noted that several factors combine to make 
CE𝜈NS an exceptionally challenging process to observe 

• Only evidence of the interaction is a low-energy recoiling 
nucleus 

- Heavier nuclei: higher cross section but lower recoil 
energies 

- Nuclear recoil signal yields are quenched, i.e. 
reduced compared to signal from electrons of same 
energy by a factor called the quenching factor (QF) 

- Detector performance hard to calibrate 

• Very-low-threshold detectors are very sensitive to 
backgrounds 

- Neutron backgrounds are particularly dangerous: 
produce low-energy nuclear recoils just like CE𝜈NS 

• Need an appropriate source of neutrinos

[1] D.Z. Freedman, Phys. Rev. D 9 (1974)
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Physics from CE𝜈NS
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Weak mixing angle - Unique probe of QW
2 at a 

unique Q in a region sensitive to dark Z boson 
models [3] 

[1] D.Z. Freedman, Phys. Rev. D 9 (1974) 
[2] C. Horowitz et al., Phys. Rev. D 68 (2003) 

[3] H. Davoudiasl et al., Phys. Rev. D 89 (2014) 
[4] J. Barranco et al., Phys. Rev. D 76 (2007) 

[5] K. Patton et al., Phys. Rev. C 86 (2012) 
[6] C. Horowitz & J. Piekarewicz, Phys. Rev. Lett. 86 (2000) 

[7] K. Scholberg, Phys. Rev. D 73 (2006) 
[8] P. Coloma et al., Phys. Rev. D 96 (2017) 

[9] A.J. Anderson et al., Phys. Rev. D 86 (2012) 
Figure from [8]

Non-standard neutrino interactions - 
explicit dependence on non-universal and 
flavor-changing neutral currents [4]

Nuclear form factor - Provides a way to 
measure neutron distributions using neutrino 
scattering [5], possibly refining nuclear 
structure models and informing 
understanding of neutron star EoS [6] 

Fundamental properties of neutrinos - 
sensitivity to effective neutrino charge radius 
and magnetic moment [7] and lift 
degeneracy of “dark side” solution to 𝜃12 that 
would complicate mass-order determination 
from oscillation experiments [8] 

Neutral-current sterile neutrino search - 
all-flavor disappearance experiment [9]

Supernova physics - Could play a role in 
dynamics of core-collapse SNe [1] and offers 
potential way to observe SNe neutrinos [2]

•
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CE𝜈NS becomes a background
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[1] M.W. Goodman, E. Witten, Phys Rev D 31 (1985) 
Figure from http://cdms.berkeley.edu/limitplots/

• Tremendous advances in detector technology 
to build more sensitive DM searches 

• Next generation of WIMP detectors will begin to 
be sensitive to CE𝜈NS from 8B solar neutrino flux 

- This “neutrino floor” brings the CE𝜈NS and 
DM relationship full circle

• Goodman & Witten recognize utility of CE𝜈NS-
sensitive detectors as potential dark matter 
detectors [1] 

- DM and CE𝜈NS interactions are both coherent 
scattering processes with the same detectable 
signature (gently recoiling nuclei) 

• Numerous instances of proposed CE𝜈NS detectors 
turning instead into competitive DM searches

P.S. Barbeau, Ph.D. thesis (UChicago 2009)



Enter: The COHERENT Collaboration
• Goal: unambiguous observation of 

CE𝜈NS using multiple nuclear targets / 
detector technologies 

- Leverage detector advances from 
dark-matter community 

- Utilize intense, pulsed neutrino 
source provided by Spallation 
Neutron Source (SNS) 

- Use of different nuclear targets allows 
for measurement of characteristic N2 
cross-section dependence and some 
added analysis advantages 

• Pioneering CE𝜈NS detector: CsI[Na]

6G.C. Rich - NDM 2018 - 2018 Jul 3
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The Spallation Neutron Source 

• Located at Oak Ridge National Lab, near Knoxville, TN, USA 

• The SNS bombards a liquid mercury target with a ~1-GeV proton beam pulsed 
at 60 Hz; each beam pulse is ~700-ns wide 

• Neutrinos are produced by decay of stopped pions and muons, resulting in flux 
with well-defined spectral and timing characteristics

7Image from https://neutrons.ornl.gov/sns

https://neutrons.ornl.gov/sns
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The Spallation Neutron Source 

8
Images from: (top) https://neutrons.ornl.gov, 

(bottom) J.R. Haines et al., Nucl Instrum Meth A 764 (2014)  
Figure from https://status.sns.ornl.gov/beam.jsp

Most intense pulsed neutron 
source in the world

https://status.sns.ornl.gov/beam.jsp
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The Spallation Neutron Source Neutrino

neutrino energy (MeV)
0 50 100 150 200 250 300

a.
u.

µν

µν

eν

• High-fidelity GEANT4 simulation starts with 
proton beam; energy spectra very near 
analytical approximations 

• Massive reduction in steady-state 
backgrounds through timing (𝒪(1000)); 
facility-wide timing signal can be used to 
trigger DAQ, both during beam-on and -off 
periods

Decaysatrest
τ≈26ns

~1GeV Decaysatrest
τ≈2.2μs

Secondaryparticles
&evaporation

p Hg

π+
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Neutrons at the SNS
• Extensive neutron-background measurement campaign at various 

locations using several detector systems 

• Leverages expertise and hardware from the various member institutions
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Neutrons at the SNS
Coded-aperture neutron imager 

• Built by ORNL collaborators 

• Intended for nuclear security applications 

• Takes a picture of target area “in neutrons”

Reminder: SNS is a billion-plus dollar facility dedicated to 
neutrons 

Target is “visible” through monolith shielding on the 
instrument floor
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Siting and backgrounds
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• Backgrounds depend 
significantly on siting at SNS 

- Extensive background 
measurement campaign 

• COHERENT experiments 
located in a basement hallway 

- ~8 m.w.e. overburden 

- 20- to 30-m from target 

• Primary backgrounds in 
neutrino alley: 

- Prompt SNS neutrons 

- Neutrino-induced neutrons 
(NINs)
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In situ measurement of neutron backgrounds

13

• Prior to CE𝜈NS search, neutron detection 
system installed at location of CsI[Na] detector 

• Data informed model of prompt SNS neutron 
energy distribution 

• Established understanding of beam timing 
w.r.t. SNS timing signal

G.C. Rich - NDM 2018 - 2018 Jul 3



In situ measurement of neutron backgrounds
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Neutrino-induced neutrons (NINs)
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• Dominant background for CE𝜈NS measurement with naïve 
shielding configuration, but interesting physics of its own 

- Possible role in nucleosynthesis in certain astrophysical 
environments [1] 

- NIN production on Pb is the fundamental mechanism by 
which HALO intendeds to detect supernova neutrinos 
[2] 

- Process has never before been measured, considerable 
variation in theoretical predictions (~3x) [3] 

• In situ measurements give rate limit, plus ongoing 
measurement of process with “neutrino cubes”

[1] Y-Z. Qian et al., Phys. Rev. C 55 (1997) 
[2] C.A. Duba et al. J. Phys. Conf. Series 136 (2008) 

[3] C. Volpe, N. Auerbach, G. Colò, and N. Van. Giai, Phys. Rev. C 65 (2002) 
NIN pathways from S.R. Elliott, Phys. Rev. C (2000)

G.C. Rich - NDM 2018 - 2018 Jul 3
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CE𝜈NS with CsI[Na]
• 14.6-kg crystal made from low-background salts, encased in 

electroformed-copper can with PTFE reflector and synthetic 
silica window, surrounded by neutron and gamma shielding, 
including low-activity lead 

• Development led by University of Chicago [1] 

• Output of super-bialkali PMT with ~30% QE digitized for 70 𝜇s, 
triggered by SNS timing signal

16

Deployed to SNS in June 2015

[1] J.I. Collar et al., Nucl. Instrum. Meth. A 773 (2015)



Quenching factor measurements at TUNL
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• Elastically scatter quasi-monoenergetic neutrons 
into “backing detectors” at known angles 

- Each backing detector associated with events 
having well-defined nuclear recoil energies 

• Determine QF from global values in range from 5 
to 30 keVnr: 8.78 ± 1.66%

“TUNL” geometry

“Chicago” geometry

G.C. Rich - NDM 2018 - 2018 Jul 3



Rate and shape estimates
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• Predict recoil distributions 
assuming SM - convert to 
photoelectrons using carefully 
determined calibrations 

• In situ neutron measurements 
inform spectral model of 
prompt SNS neutrons 

• Acceptance efficiency applied 
to models to produce beam-
power-normalized PDFs in 
energy space

Raw CEvNS recoils 
Observed CEvNS recoils

G.C. Rich - NDM 2018 - 2018 Jul 3



Rate and shape estimates
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• Pulsed nature of beam facilitates 
analysis in time domain 

• 2-D analysis (energy, time) 
makes use of all available 
information 

• Ultimately performed binned 2-D 
profile likelihood analysis using 
PDFs shown here 

- Assumes Standard Model 

- Incorporates knowledge of 
detector response, analysis 
acceptance, etc
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SM prediction and data
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Results
• Beam exposure: ~6 GWhr, or ~1.4 × 1023 protons on target (0.22 

grams of protons) 

• Analyzed as a simple counting experiment 

- 136 ± 31 counts 

• 2-D profile likelihood analysis 

- 134 ± 22 counts, within 1-𝜎 of SM prediction of 173 ± 48 

- Null hypothesis disfavored at 6.7-𝜎 level relative to best-fit 
number of counts 

• Able to further constrain some NSI parameters

21G.C. Rich - NDM 2018 - 2018 Jul 3 D. Akimov et al., Science (2017) 10.1126/science.aao0990 

Quenching factor 25%
𝜈 flux 10%

Nuc. form factor 5%

Analysis acceptance 5%

Dominant systematic 
uncertainties on predicted rates



CE𝜈NS observation data release

22

• Data that constituted CE𝜈NS observation has 
been packaged and is publicly available 

- http://dx.doi.org/10.5281/zenodo.1228631 

- https://coherent.ornl.gov 

• Should include all information necessary to 
perform further analyses on CsI[Na] data 

- Binned data for coincidence and 
anticoincidence regions for both SNS on 
and off; prompt-neutron model 

- Descriptions and values for relevant 
systematics 

• Collaboration intends to continue practice of 
data releases

G.C. Rich - NDM 2018 - 2018 Jul 3



COHERENT physics moving forward
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CENNS-10 LAr detector NaI𝜈E: NaI[Tl] 
neutrino experiment• Measure NINs cross section in 208Pb, 56Fe 

- Upgrades to detection system planned in 
cooperation with PROSPECT 

• Measure 127I CC cross section 

- 185-kg NaI𝜈E collecting low-gain CC data now 

- Sensitivity to gA quenching with Q~𝒪(10 MeV) 

• N2 dependence of CE𝜈NS cross section 

- Several distinct N values represented in 
COHERENT suite of experiments 

- 22-kg LAr detector already collecting CE𝜈NS data, 
plans for 10 kg of Ge PPCs and multi-ton NaI[Tl] 

• Begin to perform precision CE𝜈NS measurements 

- High-resolution, low-threshold detectors, such as 
Ge PPCs, enable access to exciting physics, e.g. 
electromagnetic properties of neutrinos

G.C. Rich - NDM 2018 - 2018 Jul 3



Reducing dominant systematic uncertainties
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• Indirect approaches to flux determination possible (e.g., improved 
input for models or direct measurement of pion production at SNS) 

• Conceptual design stages of a D2O detector for neutrino alley relying 
on CC interaction on D 
- D cross section is relatively well understood theoretically [1] and 

previous measurements agree with predictions [2]

• Understanding of QF is crucial for all CE𝜈NS measurements 
- Reanalyzing original data and collecting new data to resolve 

discrepancy in COHERENT QF measurements for CsI[Na] 
- Some data already collected and future measurements planned for Ge 

and NaI[Tl]
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[1] S. Nakamura et al., Nucl. Phys. A 721 (2003) 
[2] J. Formaggio and G.P. Zeller, Rev. Mod. Phys. 84 (2012)



Future of COHERENT
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• Next stages of COHERENT CE𝜈NS measurements will be a 
considerable scale up 

- Beginning plans for 𝒪(1 ton) LAr detector using underground argon 

- Development advancing for multi-ton NaI[Tl] detector capable of 
simultaneous CC and CE𝜈NS measurement; designing new PMT-
base electronics to facilitate this parallel measurement 

• Flux normalization measurements benefit all COHERENT experiments;  
early design stages

G.C. Rich - NDM 2018 - 2018 Jul 3
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Only the beginning…
• CE𝜈NS predicted in 1974 but unobserved until 2017 

- Observed at 6.7-𝜎 level using 14.6-kg CsI[Na] scintillator deployed at pulsed, stopped-pion 𝜈 source (SNS) 

• COHERENT continues to search for CE𝜈NS with numerous detectors (LAr, NaI[Tl], Ge PPCs) in addition to several other efforts 

- Working towards performing precision CE𝜈NS measurements 

• Many other groups seeking observation with many different kinds of detectors, different neutrino sources 

- Examples: CONNIE, CONUS, MINER, Nu-CLEUS, nuGEN, RICOCHET, RED-100 

- These efforts are complementary! Joint analyses using different detectors and/or sources are very powerful [1] 

• Tremendous amount of physics left to be done with CE𝜈NS 

- Important complement to oscillation measurement program through lifting of LMA-D ambiguity

26[1] J.B. Dent et al., Phys. Rev. D 97 (2018)



CE𝜈NS inspires 
young scientists! 

My cousin’s middle-
school science 

project 



Backup



Low-energy nuclear recoils from CE𝜈NS

• Signature of CE𝜈NS in a detector 
is a low-energy nuclear recoil 

• To properly interpret collected 
data, it is of paramount 
importance that detector 
response at these nuclear recoil 
energies be well understood 

• Uncertainty in detector threshold 
translates into uncertainty in 
measured cross section 

- Situation worse for heavier 
targets

29G.C. Rich - NDM 2018 - 2018 Jul 3 Figure from the COHERENT Collaboration
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• Quasi-monoenergetic neutron beam scattered by central detector into fixed 
angles covered by “backing” detectors; nuclear recoil energy kinematically well 
defined

Not to scale

Backing detectors

0-degree beam monitor

Scattered neutrons

Collimated, quasi-monoenergetic  
neutron beam

Scatterer / detector under evaluation

1.9-MeV deuterons

0.5-atm deuterium cell

Shielding wall 
~1.5 m

Low-energy nuclear recoils from neutron scattering

G.C. Rich - NDM 2018 - 2018 Jul 3
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• 3 ion sources 

• Beam can be bunched and chopped 

• 10-MV maximum terminal voltage 

• Numerous beam lines and 
experimental areas

Tandem accelerator lab at TUNL

G.C. Rich - NDM 2018 - 2018 Jul 3



Quenching factor measurements at TUNL
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• Neutron beam produced by 
pulsed deuteron beam incident 
on deuterium gas cell 

• Scattered neutrons detected by 
“backing detectors” 

• Angle of backing detector 
selects well-defined nuclear 
recoil energy

G.C. Rich - NDM 2018 - 2018 Jul 3



Quenching factor measurements at TUNL
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CE𝜈NS with CsI[Na]

• Prior to deployment, careful 
characterizations in Chicago 

• Uniformity along length confirmed 

• Response to low-energy gamma 
rays assessed via small-angle 
Compton scattering 

• Allows tuning of cuts to reject 
spurious events but accept low-
energy depositions in the CsI

34



Analysis acceptance efficiency
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CE𝜈NS with CsI[Na]

• Several layers of shielding 

- 7.5-cm-thick inner HDPE layer 
(addressing NINs) 

- 5-cm low-activity lead 

- 10-cm contemporary lead 

- 5-cm plastic-scintillator muon 
veto 

- 9+ cm water shielding on 
sides and top

36



Background model for 2-D

• Background model informed 
by anti-coincidence dataset 

• Use “factorized” approach 
taking advantage of 
uncorrelated energy/time 
features 

• Exponential fit to time 
projection, then used with 
energy projection to define 
model

37G.C. Rich - NDM 2018 - 2018 Jul 3
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Stability and general health checks

38


