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SNS Operation Overview
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» Linear Accelerator
produces ~1.1 GeV
protons.

 Accumulator Ring creates
bunches of 104 protons.

* Bunches are timed at 60 3 | T
¢ > ~1 MW Beam Energy =l L
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Neutrino Production at SNS

- About 0.08 t* are produced
per proton

- t* have a mean free path of
5 cmin Hg, so most will come
to rest before decaying
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The COHERENT Experiment

The COHERENT collaboration aims to make the first successful measurement of
Coherent Elastic Neutrino-Nucleus Scattering (CEVNS), a process predicted in the
Standard Model. Furthermore, it is to be done with multiple detector technologies to
test the predicted N? dependence of the cross-section.

Multiple auxiliary detectors have been
deployed for an extensive background
measurement campaign including
environmental gammas, neutrons,
beam-related backgrounds, and
neutrino-induced neutrons (NINs).
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Neutrino-Induced Neutrons
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FIG. 1. Multipole decomposition of the RPA response for the
charged-current (v, .e”) reaction on 2°®Pb induced by DAR v,

« Charged-Current neutrinos.
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Neutron Production Cross-Section

Volpe, Engel, McLaughlin | 1 Neutron Production 2 Neutron Production

(Phys. Rev. D 67 013005
2002)

Charged Current (v,) 2.35*%103% cm? 1.38*%103° cm?
Neutral Current (v,) 1.37*1049cm? 6.15%10% cm?
Neutral Current (v,) 8.7*¥10* cm? 1.5%10* cm?

Neutral Current (anti-v,) 2.85*%104%cm? 2.98*%104%cm?
Total 2.86*%103° cm? 1.75*%103% cm?

The ratio of 1n to 2n production is 1.64:1 total and 1.6:1 in the delayed window
(excluding v,).

Kolbe (2001) Charged Current: o = 3.29*%1073° cm?
Jacowitz (2002) Neutral Current: E,= 50 MeV o = 4.8 * 10%° cm?
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Neutrino-Induced Neutrons
(NINs)

- Environmental y, e

\\ Environmental Neutrons

Detector Lead Shielding Neutron Moderator Concrete
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Connection to Supernova
Physics

 HALO Supernova Neutrino Observatory relies on
inelastic CC cross-section for overall SNv flux.

« “Light” Heavy element production in Supernovae
via vp-process.

« Strong neutrino flux post-bounce produces proton-rich
matter. Anti-neutrino capture on free-protons
produces neutrons which capture on neutron-
deficient, proton-rich nuclei.

* |nelastic neutrino-nucleus interactions influence
the spectrum of the v, produced during SN




Neutrino-Induced Neutron
Detectors: Neutrino Cubes

* The cross-section for Neutrino-Induced
Neutron Production is predicted to be
quite large for large nuclei such as Pb, an
element commonly used in shielding.

* These events share the same time
distribution and produce nuclear recoils of
similar energy as a CEVNS event.

» Current predictions for this cross-section
differ by as much as 30%

» 3 dedicated detector modules.
* Pb deployed since 2015
* Fe deployed since late 2016
« CuTBD
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Detection Efficiency

Initial Energy of All 1n Events

Initial Energy of All 1n Events

Initial Energy of Detected Single Neutrons
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Timing Profile
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Neutrino-Induced Neutrons

Neutrons which deposit detectable energy do so quickly.
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With no time cut, our neutron signal will be
mostly background neutrons...
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Time Profile
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Neutrino Induced Neutrons

Leading Edge Event Times

Make time cut here
81% of NIN events after this time.
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Expected Neutron Signal

Expected Counts
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NIN and Fast Neutron Energy
Spectra with Time Cut

Neutrino-Induced Neutron Signal to Background Neutron Spectrum with Time Cuts
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Current Status

» Still accruing statistics for Lead

 Iron has been taking data since late 2016
* Analysis is nearly mature

* Results coming soon!




