

The COHERENT neutrino-nucleus scattering research program at the ORNL Spallation Neutron Source

(NC Central University, Triangle Universities Nuclear Laboratory) For the COHERENT Collaboration

D. Markoff

Coherent Elastic Neutrino-Nucleus Scattering - CEvNS

A neutrino scatters off a nucleus via exchange of a Z, and the nucleus recoils as a whole; coherent up to $E_v \simeq 50$ MeV

 $\nu + A \rightarrow \nu + A$

Well understood Standard Model calculation - differential cross section with respect to T, the nuclear recoil energy,

- dependence on neutron number

 $\frac{d\sigma}{dT} \propto N^2$

Experimental signature - nuclear recoil less than about 50 keV of energy deposited from nuclear recoil

- WIMP dark matter detectors developed over the last ~decade are sensitive to ~ keV to 10's of keV recoils
- ➔ Strong, pulsed neutrino source SNS

Physics of CEvNS

- Supernovae: Expected to be important in core-collapse SN processes and possible SN detection channel.
- Nuclear Physics: nuclear form factors g_A quenching
- Astrophysical Signals: Solar and SN
- v oscillations: A possible v_s detection channel
- Standard Model tests, eg: $\sin^2 \theta_{\text{Weff}}$ for low Q non-standard interactions of neutrinos neutrino magnetic moment

 Dark Matter: Important background for 10-ton direct searches

L. Strigari Private Communication October 2017 J. Billard, E. Figueroa-Feliciano, L. Strigari arXiv:1307.5458v2 (2013)

COHERENT Program

Neutrino source pulsed proton beam on a mercury target at the Spallation Neutron Source (SNS) at ORNL

Suite of detector systems for N² dependence well characterized, want low thresholds

Reduce, characterize and control backgrounds especially 10 - 100 MeV neutrons

SNS Neutrino Beam Timing Profile

COHERENT CEVNS Detector Status and Future

DNP Talk	Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)	Data-taking start date	Possible Future	
JG - 2	Csl[Na]	Scintillating crystal	14.6	20	6.5	9/2015	Continue data accumulation	
	Ge	HPGe PPC	10	22	5	2018	Additional detectors, 2.5-kg detectors	
JG - 3	LAr	Single- phase	22	29	20	12/2016, upgraded summer 2017	Expansion to ~1 tonne scale	
JG - 4	Nal[TI]	Scintillating crystal	185* /2000	28	13	*high-threshold deployment summer 2016	Expansion to 2 tonne, up to 9 tonnes	Nal(TI)

Detector Subsystem - Array of PPC HP Ge

- Smaller N: 38-44
- Excellent resolution at low energies
- Well-measured quenching factor
- Phase I: 5-10kg PPC Ge detector array:
 - <u>Repurposing on-hand Majorana</u> Demonstrator/LANL ^{nat}Ge detectors.
 - <u>Copper/Lead/Poly shield with Plastic</u> scintillator µ-veto.
 - Installation
- Potential Phase II: Expansion of target with larger-mass (C4-style) point contact detectors.

Backgrounds

NEUTRONS

100 keV – 1 MeV neutrons in the detector can produce similar recoil spectra as our neutrino scattering signal

Multiple technologies, complementary analysis to determine background neutrons

Prompt neutron flux ~ 1×10^{-7} neutrons/cm²/s

Expected rates in detectors - below CEvNS signal

NEUTRINO INDUCED NEUTRONS (NINs)

Neutrons can be produced near the detectors. They will be pulsed, and share the 2.2 μ s decay time of the neutrinos

In-situ measurements using EJ - 301 cells inside CsI detector region - measured flux lower than expected

Analysis of NIN data in dedicated neutrino-cube underway

Process important in its own right

$\nu_e + ^{208} Pb \; \Rightarrow$	$^{208}Bi^{*} + e^{-}$	(CC)
	$^{\Downarrow}_{208-y}Bi + x\gamma + yn$	
$ u_x + ^{208} Pb \Rightarrow$	$^{208}Pb^{*} + \nu_{x}^{'}$	(NC)
	$\stackrel{\psi}{^{208-y}Pb} + x\gamma + yn.$	

COHERENT Non-CEvNS Detectors ("In-COHERENT")

Sandia Neutron Scatter Camera	Multiplane liquid scintillator	Neutron background	Deployed 2014-2016
LS in CoSI Shield	liquid scintillator	NINs background	Deployed 2014-2015
SciBath	WLS fiber + liquid scintillator	Neutron background	Deployed 2015
Nal[TI]	Scintillating crystal	v_e CC	High-threshold deployment 2016
Lead Nube	Pb + liquid scintillator	NINs in lead	Deployed 2016
Iron Nube	Fe + liquid scintillator	NINs in iron	Deployed 2017
MARS	Plastic scintillator and Gd sandwich	Neutron background	Deployed 2017
Mini-HALO	Pb + NCDs	NINs in lead	In design

- And many more ideas and activities for Neutrino Alley and beyond...
- Inelastic CC and NC in Ar, Pb, ...
- Other crystal or scint deployments in CsI shield
- Study of NIN with liquid scintillator in CsI shield
- Flux normalization using D₂O (well known xscn)
- Ancillary measurements: Quenching Factors

First Observation of CEvNS - at the SNS with 14.6-kg CsI[Na] detector

Observation of coherent elastic neutrino-nucleus scattering

D. Akimov^{1,2}, J. B. Albert³, P. An⁴, C. Awe^{4,5}, P. S. Barbeau^{4,5}, B. Becker⁶, V. Belov^{1,2}, A. Brown^{4,7}, A. Bolozdy... + See all authors and affiliations

Science 03 Aug 2017: eaao0990 DOI: 10.1126/science.aao0990

D. Akimov et al., *Science*, 2017 <u>http://science.sciencemag.org/</u>content/early/2017/08/02/science.aao0990

Best fit: 134 ± 22 observed events

No CEvNS rejected at 6.7 σ , consistent w/SM within 1 σ

Deployments so far in Neutrino Alley

View looking down "Neutrino Alley"

11

Cummulative Protons on Target Monitoring of Accumulated Statistics in Each Subsystem

The COHERENT collaboration

http://sites.duke.edu/coherent

~80 members, 19 institutions, 4 countries

DMM supported by NSF-HRD-1601174

The COHERENT Experimental Program

To unambiguously measure the coherent neutrino-nucleus cross section in multiple nuclei.

The COHERENT Collaboration has observed CEvNS in CsI

Mulitple target materials in development and acquiring data CsI, LAr, NaI[TI], Ge (show N² dependence) Other target materials under consideration for feasibility

Supports other activities: quenching factor measurements, charged current cross sections, NINs measurements,

Work toward target sensitivity for nuclear physics, NSI measurements,...

Extra Slides -Cool Pictures for Just in Case

Backup Slides: Quenching Factor Measurements

- A facility has been developed at Duke/TUNL to enable the precision calibration of all of these detectors. *CsI(Na) and NaI(TI) data in the can. Quenching factor uncertainties are the dominant uncertainty on the cross-sections, after the beam flux.*
- The neutron beam is tunable (20 keV 3 MeV), Monochromatic (3 keV width), collimated (1.5 cm) and pulsed (2 ns)

Neutron Background Studies at the SNS Basement

Fast neutron backgrounds in the basement are clearly associated with 800 ns protons on target

A 2.2 μs window after the beam would highlight muon decay neutrinos ($\nu_{\mu}\text{-bar},\,\nu_{e})$

Neutron backgrounds reduced by at least an order of magnitude in the delayed window compared to prompt

Neutrons in the delayed window are significantly lower in energy and therefore relatively easier to shield.

Scatter-camera data (SNL) Consistent with earlier Portable LS Cells data (ORNL) Confirmation with initial data from SciBath imager (IU)

Measuring the ν -induced Neutrons

- Several palletized (mobile) targets with LS detectors delivered to the SNS
- Will measure neutrino-induced-neutrons on Pb, Fe and Cu