Daniel J Salvat University of Washington For the COHERENT collaboration

HHMNASDREET

(COHERENT

Coherent elastic *v*-*N* **scattering**

largest neutrino-matter cross section

A grave experimental challenge

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering.

CE_V**NS** in the SM and beyond

interactions (NSI)

stars, dark matter, nuclear physics...

6000

5000

Ja 4000

Stents 1

2000

1000

10-1

Recoil energy (keVr

KeV

- Irreducible WIMP
 background
- Critical for heat transport in supernovae
- Independent sin²θ_W measurement
- Form factors sensitive to neutron skin
- Future means of reactor monitoring
- Probe BSM physics from v mag. moment

The Spallation neutron neutrino source

"Neutrino Alley"

8 m.w.e. overburden

"Neutrino Alley"

Dedicated Sandia *n*-scatter camera and SciBath measurements

Forthcoming measurements w/ multiplicity and recoil spectrometer (MARS) detector

Neutrino-induced-neutrons correlated with beam

$$\nu_{e} + {}^{208}Pb \Rightarrow {}^{208}Bi^{*} + e^{-} \qquad (CC)$$

$$\downarrow \\ {}^{208-y}Bi + x\gamma + yn$$

$$\nu_{x} + {}^{208}Pb \Rightarrow {}^{208}Pb^{*} + \nu'_{x} \qquad (NC)$$

$$\downarrow \\ {}^{108-y}Pb + x\gamma + yn.$$

Not just a "nu"-isance -cross section is of astrophysical interest, e.g. SNv detection in HALO expt

A hand-held neutrino detector

- 14.6 kg low bkgd crystal in e-formed Cu,
 PTFE reflector, super-bialkali PMT
- Na doping for lower afterglow
- shielded w/ HDPE, Pb, water + μ-veto

11

Measuring the quenching factor

- detect fast-*n* scatters with known kinematics
- Dominant systematic for Csl[Na] result
- Improved analysis within COHERENT forthcoming

In situ background measurements

- EJ301 fast-*n* detectors in similar shielding package
- systematic MCNP-PoliMi comparison

CsI calibration and cuts

Careful tuning of cuts, measured light yield and uniformity

Extracting the CEvNS signal

Acquire beam coincident and anti-coincident data

Construct expected signal from known light yield, Q.F., flux, timing, form factor information

construct measured signal vs time and p.e.

First results and impact

Meanwhile in neutrino alley...

22 kg single-phase LAr scintillator

- Built by FNAL, commissioned at IU
- heated getter for ~1ppm purity
- *E_{th}*~20 keV, ~3 p.e./keVee
- expect first CEvNS result in ~1 y

NalvE

- 185 kg compact Nal[Tl] array
- Measure inclusive ¹²⁷I(v_e,e⁻)Xe^{*} cross section -- nuclear modeling/address g_A quenching
- Expect @(5-10) evt. per month
- μ -veto upgrade in Nov 2017
- Bkgd characterization for ton-scale upgrade

Ja	Ga(Pe, C) GC	⁵¹ Cr	SAGE	$0.0055 \pm 0.0007(tot)$	0.0000 [Diteli] (Harton, 1000)
⁷¹ Ga	$^{71}\text{Ga}(\nu_e, e^-)^{71}\text{Ge}$	⁵¹ Cr source	GALLEX, ave.	$250 \pm 108(\text{stat}) \pm 43(\text{sys})$ $0.0054 \pm 0.0009(\text{tot})$	204 [Snell] (Kolbe et al., 1999a) 0.0058 [Shell] (Haxton, 1998)
56 -	$^{12}C(\nu_{\mu},\mu^{-})^{12}N_{g.s.}$	Decay in Flight	LSND	$56 \pm 8(\text{stat}) \pm 10(\text{sys})$	68-73 [CRPA] (Kolbe <i>et al.</i> , 1999b) 56 [Shell] (Hayes and S, 2000)
					1750-1780 [CRPA] (Kolbe <i>et al.</i> , 1999b) 1380 [Shell] (Hayes and S, 2000) 1115 [Green's Function] (Meucci <i>et al.</i> , 2004)

A look ahead

- We have detected CEvNS at 6.7 σ, with good SM agreement -- Csl[Na] data-taking continues
- Improved background studies with Nubes/MARS
- 10 kg PPC Ge, w/ future upgrade to state-of-the-art tech -- study e.m. properties
- Nal: 2-ton CEvNS sensitive upgrade
- Further NIN studies, several prospects for additional target nuclei for improved nuclear-, astro-, and particle-physics reach

The COHERENT Collaboration

