Coherent Scattering Results and Future

The Smallest Neutrino *Detectors* in the World

Phil Barbeau

Coherent v-Nucleus Scattering

- 43 years ago, Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) was predicted with the realization of the neutral weak current. D. Z. Freedman, PRD 9 (5) 1974
- Neutrino scatters coherently off all Nucleons \rightarrow cross section enhancement: $\sigma \propto \mathbf{N}^2$
- Initial and final states must be identical: Neutral Current elastic scattering
- Nucleons must recoil in phase \rightarrow low momentum transfer qR <1 \rightarrow very low energy nuclear recoil

Supernovas Don't Like to Explode

- Neutrinos carry 99% of the energy released (10⁵³ ergs)
- CEVNS acts to reinvigorate stalled shock waves J.R. Wilson, PRL 32 (74) 849

Neutron Skin Depth

- Neutrons in nuclei are pushed out past the radius of protons
- The loss of coherence in CEvNS measures the neutron distribution, which has implications for neutron star structure and the equation of state

Are There More Neutral Currents?

- The CEvNS interaction rate is proportional to Qw²
- Supersymmetric extensions to the Standard Model can change the interaction rate and kinematics of CEVNS L. M. Krauss, PLB 269, 407
- Testable theories include models that can explain the (g-2)_µ anomaly and also play a role as Dark Matter
- Can also lead to "non-standard" neutrino interactions
 - J. Barranco et al., JHEP0512:021, 2005 K. Scholberg, Phys.Rev.D73:033005, 2006

$$\sigma_{coh} \sim \frac{G_f^2 E^2}{4\pi} (Z(4 \sin^2 \theta_w - 1) + N)^2$$

Searches for Sterile Neutrinos

- Several past experiments have observed anomalous behavior of neutrinos suggesting that they oscillate into sterile neutrinos.
- CEvNS provides perhaps the best way to explore any sterile neutrino sector A. Drukier & L. Stodolsky, PRD 30 (84) 2295

This Has Been Attempted Before...

- A new type of bolometric detector was proposed in 1984 by Drukier and Stodolsky and 1985 by Blas Cabrera, Lawrence Krauss and Frank Wilczek
- Spallation targets, reactors and the sun suggested as neutrino sources (1984)

A. Drukier & L. Stodolsky, PRD 30 (84) 2295

B. Cabrera, L. Krauss, F. Wilczek, PRL 55, 25 (1985)

- This was the precursor to the CDMS and CRESST Dark Matter searches
- It turns out looking for Dark Matter was easier

An irreducible background for WIMP searches.

The Global CEvNS ("sevens") Research Program

The Spallation Neutron Source

- Pion Decay-at-Rest Neutrino Source
- $v \text{ flux } 4.3 \text{x} 10^7 v \text{ cm}^{-2} \text{ s}^{-1} \text{ at } 20 \text{ m}$
- Pulsed: 800 ns full-width at 60 Hz

<1% contamination from non-CEvNS scatters

~4x10⁻⁵ background reduction

A Hand-Held Neutrino Detector

- 14.6 kg low-background Csl[Na] detector
 deployed to a basement location of the
 SNS in the summer of 2015
- ~ 2.6x10²³ POT delivered and recorded since CsI began taking data

Csl[Na] Signals

- Even at the SNS CEvNS gives rise to extremely low energy nuclear recoils
- ~ 1.2 PE/keV_{nr} after accounting for Quenching Factor for nuclear recoils
- expect 5-30 photoelectrons

The Result D. Akimov et al., Science 10.1126/science.aao0990 (2017).

The Result D. Akimov et al., Science 10.1126/science.aao0990 (2017).

 We report a 6.7 sigma significance for an excess of events, that agrees with the standard model prediction to within 1 sigma

Implications for Non-Standard Neutrino Interactions (COHERENT)

- First result improves constraints on nonuniversal NSI
- Low hanging fruit. We can expect significant improvement with more data, and when more COHERENT detectors report their results

Implications for Non-Standard Neutrino Interactions

Current result already rules out (in combination with neutrino oscillation data) the Large Mixing Angle "Dark" solution.

Coloma et al, arXiv:1708.02899v1

The result also finds tension (at 2 sigma) with a light-mass Z' dark mediator that can explain the $(g-2)_{\mu}$ anomaly. Liao and Marfatia, arXiv:1708.04255v1

Data and Tools Publicly Available

April 25, 2018

COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering

Akimov, D; Albert, J.B.; An, P.; Awe, C.; Barbeau, P.S.; Becker, B.; Belov, V.; Blackston, M.A.; Bolozdynya, A.; Brown, A.; Burenkov, A.; Cabrera-Palmer, B.; Cervantes, M.; Collar, J.I.; Cooper, R.J.; Cooper, R.L.; Cuesta, C.; Daughhetee, J.; Dean, D.J.; del Valle Coello, M.; Detwiler, J.; D'Onofrio, M.; Eberhardt, A.; Efremenko, Y.; Elliott, S.R.; Etenko, A.; Fabris, L.; Febbraro, M.; Fields, N.; Fox, W.; Fu, Z.; Galindo-Uribarri, A.; Green, M.P.; Hai, M.; Heath, M.R.; Hedges, S.; Hornback, D.; Hossbach, T.W.; Iverson, E.B.; Kaemingk, M.; Kaufman, L.J.; Klein, S.R.; Khromov, A.; Ki, S.; Konovalov, A.; Kovalenko, A.; Kremer, M.; Kumpan, A.; Leadbetter, C.; Li, L.; Lu, W.; Mann, K.; Markoff, D.M.; Melikyan, Y.; Miller, K.; Moreno, H.; Mueller, P.E.; Naumov, P.; Newby, J.; Orrell, J.L.; Overman, C.T.; Parno, D.S.; Penttila, S.; Perumpilly, G.; Radford, D.C.; Rapp, R.; Ray, H.; Raybern, J.; Reyna, D.; Pach, G.C.; Rimal, D.; Rudik, D.; Salvat, D.J.; Scholberg, K.; Scholz, B.; Sinev, G.; Snow, W.M.; Sosnovtsev, V.; Shakirov, A.; Suchyta, S.; Suh, B.; Tayloe, R.; Thornton, R.T.; Tolstukhin, I.; Vanderwerp, J.; Varner, R.L.; Virtue, C.J.; Wan, Z.; Yoo, J.; Yu, C.-H.; Zawada, A.; Zderic, A.; Zettlemoyer, J.

Release of COHERENT Collaboration data associated with the first observation of coherent elastic neutrino-nucleus scattering (CEvNS), as published in Science (DOI: 10.1126/science.aao0990) and also available as arXiv:1708.01294[nucl-ex].

This data set should enable researchers to extend the study of CEvNS as desired. Future COHERENT Collaboration results will have similar data releases.

Example code can be accessed at

https://code.ornl.gov/COHERENT/codeExamples_dataRelease_april2018. The full data-release package, including data, code examples, and a descriptive accompanying document can be found at http://coherent.ornl.gov/data. Also PyCEvNS Collaboration for incorporating realistic detector responses

Dataset Open Access

COHERENT CEVNS Detectors Aiming for Precision

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)
Csl[Na]	Scintillating Crystal	14.6	19.3	6.5
Ge	HPGe PPC	10	22	5
LAr	Single-phase	22	29	20
Nal[TI]	Scintillating crystal	185*/ 2000	28	13

COHERENT CEVNS Detectors Aiming for Precision

World-Wide CEvNS Efforts

Open the Floodgates: CONUS

CONRAD Detector in CONUS Shield - during assembly

J. Hakenmuller, TAUP 2017

Low Threshold Ge detectors at the Brokdorf Reactor

Open the Floodgates: CONNIE

Low Threshold Si CCD detectors (~ 100 g!) at Angra #2

Open the Floodgates: Nu-Cleus, Ricochet, MINER...

*from Tali Figueroa and Adam Anderson

Cryogenic Bolometric detectors with extremely low phonon thresholds

This is Only the Beginning

- After 43 years, CEvNS observed at 6.7 sigma CL.
- COHERENT Continues to search for CEvNS (LAr, Nal[TI], Ge PPCs)
- A new era of miniaturized neutrino detector technology with several other collaborations coming on line (CONNIE, CONUS, MINER, RED, Ricochet, Nucleus)
- A treasure trove of physics can be studied—the best is yet to come!

Workshop: "The Magnificent CEvNS"

- **Why:** To bring together Theorists, Phenomenologists and Experimentalists to explore the complementarity and capabilities of the present and future CEvNS data/experiments
- When: Nov 2-3, 2018
- Where: Hosted by the Enrico Fermi Institute and Kavli Institute for Cosmological Physics at the University of Chicago
- Who: contact Grayson Rich, Louis Strigari or Juan Collar for info

Thank

YOU

Hunting for a Background-Free Location

 Extensive background measurement campaign since 2013 pointed to the SNS basement as the optimal location (>10⁴ reduction of neutrons)

Measuring the Neutron Backgrounds

- "Neutrino Alley" mostly shields us from the
- "Neutrino Alley" mostly shields us from the copious flux of neutrons produced at the SNS We also performed an in-situ measurement of the neutrons with a liquid scintillator within the Csl shield prior to installation of Csl[Na] detector

New Background: v-induced Neutrons (NINs)

- In-situ measurement also provides a constraint on this neutronproducing background in the lead shield of the detector
- First indications of neutrinoinduced neutrons in Pb (a factor of 1.7 below theory prediction)
- Can be important process in many stellar environments

C.A. Duba *et al.* J.Phys.Conf.Series 136 (2008)
Y-Z. Qian *et al.*, Phys. Rev. C 55 (1997)
M. Athar, S. Ahmad and S. K. Singh., Nucl. Phys. A 764 (2006) 551-568

$$\nu_{e} + {}^{208}Pb \Rightarrow {}^{208}Bi^{*} + e^{-} (CC)$$

$$\downarrow_{208-yBi+x\gamma+yn}$$

$$\nu_{x} + {}^{208}Pb \Rightarrow {}^{208}Pb^{*} + \nu'_{x} (NC)$$

$$\downarrow_{208-yPb+x\gamma+yn}$$

$$\int_{500}^{600} {}^{60$$

Quenching Factor?

- Only a fraction of the energy of the recoil ends up in measurable channels
- This is largely unknown, and needs to be calibrated
- A facility has been developed at TUNL for precision detector calibrations in support of COHERENT

TUNL Quenching Factor Measurements

TUNL Quenching Factor Measurements

HPGe measurements provide strong systematic controls, including channeling

More COHERENT Detectors

- A 22 kg liquid argon, singlephase detector is currently being commissioned at the SNS
- ⁴⁰Ar nucleus is even-even and so can be used to help normalize the neutrino flux

More COHERENT Detectors

- A 10 kg PPC germanium array is being designed
- Low-thresholds allow sensitive searches for Neutrino Magnetic Moments and light-mass, dark Z' mediators
- Exquisite energy resolution is useful for Neutron Form Factor measurements

More COHERENT Detectors

- A 185 kg Nal[TI] array has been deployed to search for the ¹²⁷I charged-current reaction (important for understanding g_A renormalization with implications for neutrinoless double beta decay)
- A multi-ton array is being designed to measure CEvNS on Na (important for understanding axial currents)

More in-COHERENT Detectors

- Several palletized (mobile) targets with LS detectors delivered to the SNS
- Will measure neutrino-induced-neutrons on Pb (r-process nucleosynthesis & nuclear structure)
- and Fe (nuclear structure & SN shock revival)

Waveform Analysis

Event Selection Efficiencies

The Result D. Akimov et al., Science 10.1126/science.aao0990 (2017).

We perform a binned ML fit for the CEvNS signal, including the constraints on the neutron backgrounds, and taking steady-state backgrounds from an anti-coincident window

