Searching for Neutrino-Induced Neutron Production at the Spallation Neutron Source (SNS) on Lead

Brandon Becker On the behalf of the COHERENT Collaboration April 15th, 2018

Coherent Elastic Neutrino-Nucleus Scattering

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790

- Weak neutral current process
- Low momentum transfer: $1/q < R_N$
- Identical initial and final states
- •Coherence preserved for $E_v < \sim 50 \text{ MeV}$

Enhanced cross-section for heavy nuclei!

CEvNS Cross-Section

- Cross section proportional to N² of the target
- Some correction due to neutron radius is necessary

TENNESSEE T

Spallation Neutron Source

SNS Operation Overview

- Linear Accelerator produces ~1.1 GeV protons
- Accumulator Ring creates bunches of 10¹⁴ protons @ 800 ns FWHM
- Bunches are timed at 60 Hz
- → ~1 MW Beam Energy Delivered to Hg Target

Neutrino Production at SNS

COHERENT Collaboration

The COHERENT Experiment

The COHERENT collaboration aims to make the **first successful measurement of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)**, a process predicted in the Standard Model. Furthermore, it is to be done with multiple detector technologies to test the predicted N² dependence of the cross-section.

Multiple auxiliary detectors have been deployed for an extensive background measurement campaign including environmental gammas, neutrons, beam-related backgrounds, and neutrino-induced neutrons (NINs).

FIG. 4: (a) Fast neutron spectra measured with the neutron scatter camera throughout the SNS facility. A clear reduction by over four orders of magnitude from the experimental hall to the basement locations is seen. No neutron scatters were detected in the delayed window for the basement 8 m.w.e. location. (b) Arrival times of neutrons with respect to SNS beam timing signals.

Neutrino-Induced Neutrons (NINs)

- Neutrino interacts with nucleus, raising the nucleus to an excited state.
- Excited nucleus decays via particle emission (p, n, α, γ)
- Charged-Current

$$v_e + _Z X_N \rightarrow e^- + _{Z+1} X^*_{N-1}$$

Neutral Current

 $v_x + _Z X_N \rightarrow v_x + _Z X_N^*$

- Large uncertainty in crosssection
- Interesting physics case on its own!

FIG. 1. Multipole decomposition of the RPA response for the charged-current (ν_e , e^-) reaction on ²⁰⁸Pb induced by DAR ν_e neutrinos.

Neutrino-Induced Neutrons (NINs)

TENNESSEE KNOXVILLE

Connection to Supernova Physics

- HALO Supernova Neutrino Observatory relies on inelastic charged-current cross-section for overall SNv flux
- "Light" Heavy element production in Supernovae via vp-process.
 - Strong neutrino flux post-bounce produces proton-rich matter. Anti-neutrino capture on free-protons produces neutrons which capture on neutrondeficient, proton-rich nuclei.
- Inelastic neutrino-nucleus interactions influence the spectrum of the v_e produced during SN

Pb detector assembly includes 980 kg of cast lead with hollow volumes for Liquid Scintillator (EJ-301) detectors chosen for neutron/gamma discrimination. Assembly sits atop a steel palette with 5 muon veto panels on top and sides of lead volume. Exterior water bricks provide shielding against background neutrons.

Neutrino-Induced Neutron Detectors: Neutrino Cubes

- The cross-section for Neutrino-Induced Neutron Production is predicted to be quite large for large nuclei such as Pb, an element commonly used in shielding.
- These events share the same time distribution and produce nuclear recoils of similar energy as a CEvNS event.
- Current predictions for this cross-section differ by as much as 30%
- 3 dedicated detector modules.
 - Pb deployed since 2015
 - Fe deployed since late 2016
 - Cu TBD

Example Triggered Event

NINs vs Fast Neutron Background

Current Status

- Still accruing statistics for Lead and Iron
 - Considering possible upgrades options Boron Loaded Liquid Scintillator
- Pb analysis is nearly mature
 - Investigating methods to improve particle discrimination

Backup Slides: Electronics/Technical Details

- 4 EJ-301 Organic Liquid Scintillator Cells
 - 4.5" diameter, 9" length
 - Electron Tubes 9821-KEB 3" PMT
- CAEN V1730 digitizer
- CAEN V895 discriminator Muon Veto System
- CAEN V1495 FPGA/trigger unit
- CAEN V2718 Optical VME bridge card
- CAEN A3818 PCIe card
- CAEN 4527 HV Mainframe

Currently operating 2 EJ-301 cells per Nube with Fe detector deployed. Additional replacement liquid scintillators are being installed.

