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Coherent Elastic Neutrino-Nucleus Scattering
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Coherent effects of a weak neutral current
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* Cross section proportional to N2 of the target
 Some correction due to neutron radius is necessary
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Spallation Neutron Source
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SNS Operation Overview

Linear Accelerator produces
~1.1 GeV protons

Accumulator Ring creates
bunches of 104 protons @
800 ns FWHM

Bunches are timed at 60 Hz
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Neutrino Production at SNS

- About 0.08 t* are produced
per proton

- " have a mean free path of
5 cm in Hg - most will come
to rest before decaying
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COHERENT Collaboration
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The COHERENT Experiment

The COHERENT collaboration aims to make the first successful measurement of
Coherent Elastic Neutrino-Nucleus Scattering (CEVNS), a process predicted in the
Standard Model. Furthermore, it is to be done with multiple detector technologies to
test the predicted N? dependence of the cross-section.

Multiple auxiliary detectors have been |
deployed for an extensive background Hg TARGET
measurement campaign including | —PROTONBEAM _ >

environmental gammas, neutrons, “SHIELDING MONOLITH

beam-related backgrounds, and
neutrino-induced neutrons (NINs).
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FIG. 4: (a) Fast neutron spectra measured with the neutron scatter camera throughout the SNS facility. A clear
reduction by over four orders of magnitude from the experimental hall to the basement locations is seen. No neutron
scatters were detected in the delayed window for the basement 8 m.w.e. location. (b) Arrival times of neutrons with
respect to SNS beam timing signals.
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Neutrino-Induced Neutrons

(NINS)

 Neutrino interacts with
nucleus, raising the nucleus to
an excited state.

« Excited nucleus decays via
particle emission (p, n, q, V)

» Charged-Current
Vet XN 2 €+ 2, X4
* Neutral Current
Vyx + ZXN 2 Vyx + ZX*N
« Large uncertainty in cross-
section

* Interesting physics case on its
own!
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FIG. 1. Multipole decomposition of the RPA response for the
charged-current (v, .e”) reaction on 2°Pb induced by DAR v,
neutrinos.
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Neutrino-Induced Neutrons
(NINs)

- Environmental y, e

\\ Environmental Neutrons

Detector Lead Shielding Neutron Moderator Concrete
(Organic (Water, Plastic)

Liquid

Scintillator)
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Connection to Supernova
Physics

HALO Supernova Neutrino Observatory relies on
inelastic charged-current cross-section for overall

SNv flux

“Light” Heavy element production in Supernovae
via vp-process.

« Strong neutrino flux post-bounce produces proton-rich
matter. Anti-neutrino capture on free-protons
produces neutrons which capture on neutron-
deficient, proton-rich nuclei.

Inelastic neutrino-nucleus interactions influence
the spectrum of the v, produced during SN




Pb detector assembly includes 980 kg of cast
lead with hollow volumes for Liquid Scintillator
(EJ-301) detectors chosen for neutron/gamma
discrimination. Assembly sits atop a steel palette
with 5 muon veto panels on top and sides of lead
volume. Exterior water bricks provide shielding
against background neutrons.

Neutrino-Induced Neutron
Detectors: Neutrino Cubes

The cross-section for Neutrino-Induced
Neutron Production is predicted to be
quite large for large nuclei such as Pb, an
element commonly used in shielding.
These events share the same time
distribution and produce nuclear recoils of
similar energy as a CEVNS event.
Current predictions for this cross-section
differ by as much as 30%
3 dedicated detector modules.

* Pb deployed since 2015

* Fe deployed since late 2016
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Example Triggered Event
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NINs vs Fast Neutron Background Detection Efficiency

Iniial Energy of All 1n Events

Neutrino Induced Neutron Signal v. Fast Neutron Signal =
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Current Status

 Still accruing statistics for Lead and Iron

« Considering possible upgrades options —
Boron Loaded Liquid Scintillator

* Pb analysis is nearly mature

* Investigating methods to improve particle
discrimination




Backup Slides: Electronics/Technical

Detalils

« 4 EJ-301 Organic Liquid Scintillator Cells
« 4.5" diameter, 9" length
« Electron Tubes 9821-KEB 3” PMT
« CAEN V1730 digitizer
« CAEN V895 discriminator — Muon Veto System

 CAEN V1495 FPGA/trigger unit
« CAEN V2718 — Optical VME bridge card

« CAEN A3818 — PCle card ;

« CAEN 4527 HV Mainframe e
Currently operating 2 EJ-301 cells per Nube with 53
Fe detector deployed. Additional replacement '
liquid scintillators are being installed.
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