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Abstract

Neutrinos represent a rich field of physics that contains many theoretical problems

that are yet to be solved and experimental results hinting at physics beyond the

standard model (BSM) of particle physics. An experiment studying neutrino physics

and that is the source of the data used in the studies presented here is COHERENT.

Its primary goals are to measure and characterize coherent elastic neutrino-nucleus

scattering (CEνNS). Studying CEνNS, a standard-model process, provides a direct

way to constrain BSM theories. The area of neutrino physics that is primarily inves-

tigated in this work is non-standard neutrino interactions (NSI). I use the data taken

by the CsI and CENNS-10 detectors of the COHERENT experiment to improve the

constraint on the εdVee and εuVee NSI couplings. In addition to combining the data of

those detectors, I use the Feldman-Cousins technique to improve the NSI limit, re-

sulting in two bands of allowed couplings that together are 1.2 times narrower than

the original COHERENT limit [A+17c]. Multiple future improvements are discussed.

Another topic investigated here is non-zero neutrino magnetic moments, that, if

measured, would point to BSM physics. I estimate the sensitivity of the future CO-

HERENT program to µνµ by minimizing the likelihood function of observing nuclear

recoils due to that neutrino magnetic moment in the COHERENT Ge detector. The

obtained predicted sensitivity is µνµ < 8 · 10−10µB, which is not as strong as indirect

limits, but is similar to existing direct constraints.
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Chapter 1

Introduction

The Standard Model of Particle Physics (SM) has been very successful in predicting

experimental results for many decades. Despite that, a number of measurements

exist that can not be fully explained by the SM.

Neutrino physics provides multiple examples of such discrepancies. Even neutrino

masses are not included in the SM, in spite of being known to be non-zero since the

discovery of neutrino oscillations in the nineties. One of the reasons for that has to be

the difficulty in studying these particles due to their barely interacting with matter.

However, nowadays, experiments specifically designed for detecting neutrinos observe

them in large quantities, rapidly increasing our knowledge of neutrino physics. Some

types of neutrino interactions are very well studied, while many others are still poorly

known with no experimental data available.

Coherent elastic neutrino-nucleus scattering (CEνNS) [Fre74] was predicted over

four decades ago, but is only entering its experimental era with the first observa-

tion being performed in 2017 [A+17c]. Thus, this scattering has not yet been well

constrained experimentally and could provide significant deviations from the SM.

COHERENT [A+a] is a leading experiment in the field of CEνNS detection and

characterization, producing the first CEνNS measurement three years ago [A+17c]

and currently releasing results from its second CEνNS detector [A+20b].

This work attempts to constrain neutrino interactions using the COHERENT

experiment’s data and to study COHERENT’s future capability to measure non-zero

neutrino magnetic moments. I present the background information and my findings

here.

1



First, I briefly describe the relevant physics in Chapter 2. This chapter includes a

discussion of CEνNS, NSI, and neutrino magnetic moments. Current limits and the

motivation for performing the work presented here are also included in that chapter.

In Chapter 3, I write about the COHERENT experiment. Particularly empha-

sized are the detectors that produced the data used for the studies in this work,

CsI and CENNS-10, and the source of the neutrino used, Spallation Neutron Source

(SNS). In addition, other COHERENT detectors, both those currently taking data

and the ones still being designed or constructed, are mentioned.

Chapter 4 describes the procedures used in COHERENT to acquire data, as well

as how those data are prepared for use in this work. In particular, this chapter

describes the data-monitoring system to which the author significantly contributed.

Then the statistical tools used directly by the author are presented in Chapter 5.

This is where the likelihood analysis and the Feldman-Cousins (FC) procedure are

defined. The results are also shown in this chapter. The CsI and CENNS-10 data were

used to constrain the εdVee and εuVee NSI couplings, and the design of the COHERENT

Ge detector was assumed for estimating its µνµ sensitivity.

Lastly, I conclude with a discussion of the results and possible ways of improving

them.

2



Chapter 2

Neutrino Physics

In the SM, neutrinos are neutral fermions that only interact via the weak interaction.

They are assumed to be massless fundamental particles that form left electroweak

SU(2) doublets with the corresponding charged leptons. Therefore, just as charged

leptons, they exist in three flavors: electron (e), muon (µ), and tau (τ). Taking into

account that their antiparticles, antineutrinos, interact differently with matter and

can be distinguished from the corresponding neutrinos, the SM includes six types of

neutrinos in total.

Because of the existence of the phenomenon of neutrino oscillations, we know

that neutrinos actually have masses. They propagate in three mass states, which

are different from the aforementioned flavor states, and the masses of at least two of

those states are non-zero.

Neutrinos are also well known to be hard to measure due to weak-interaction

couplings being orders of magnitude smaller than couplings associated with other

SM forces. A typical neutrino-nucleus cross section at the MeV scale is around

10−41 cm2 (see Figure 2.1), while the characteristic nuclear-interaction cross section

is on the order of 10−24 cm2 (approximately the area of an atomic nucleus). Thus,

neutrino detectors are usually of considerable size and contain many tons of sensitive

materials in order to survey enough nuclei for the probability of at least one neutrino

interacting in the detector volume to be non-negligible.

Weak interactions are mediated by the electroweak bosons, W± and Z0, which

therefore serve as mediators for neutrino interactions. Neutrino reactions that involve

the W± boson are called charged-current (CC) interactions, and reactions with the Z0

3



Figure 2.1: Neutrino cross sections in argon [A+c]. The red curves are elastic-scat-
tering neutrino cross sections on electrons, the green and blue curves are CC inter-
actions, the magenta curve is the NC interaction, and the teal curve is the CEνNS
cross section on argon.
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Figure 2.2: Feynman diagram representing CEνNS.

boson are neutral-current (NC) interactions. In a CC reaction, the incoming neutrino

turns into the corresponding charged lepton, which can then be detected. A SM NC

reaction does not change the neutrino type, so only the other participant’s final state

can be observed (for low energy neutrinos interacting with nuclei, the observable can

be nuclear recoil, deexcitation gammas, etc.).

2.1 Coherent Elastic Neutrino-Nucleus Scattering

2.1.1 Standard-Model CEνNS

The SM allows for a neutrino to interact with a nucleus as a whole without changing

its own or the nucleus’ internal state. This interaction is CEνNS:

ν + A→ ν + A, (2.1)

where ν is the neutrino and A is the nucleus it interacts with (see Figure 2.2).

If pν,A and p
′
ν,A are the initial and the final momenta of the neutrino and the

nucleus, respectively, and assuming that the target nucleus starts at rest (pA = 0),

then the momentum transfer is

Q = pν − p
′

ν = p
′

A (2.2)

5



and its square is (using E2 − p2 = m2)

Q2 =
(
p

′

A

)2

= (M + T )2 −M2 = 2MT + T 2 ≈ 2MT, (2.3)

where T is the nuclear recoil energy, M is the mass of the nucleus, and T � 2M .

The maximum momentum transfer (and maximum nuclear recoil) corresponds

to the head-on collision, where the target nucleus recoils in the initial direction of

the incoming neutrino. In this case, we can rewrite the law of conservation of four-

momenta, Pν + PA = P
′
ν + P

′
A, as

Pν + PA − P
′

A = P
′

ν (2.4)

and square it to get

0 =
(
Pν + PA − P

′

A

)2

= −2Tmax (M + Eν) + 2Eν
√
T 2
max + 2MT. (2.5)

Solving this equation for Tmax gives us

Tmax =
2E2

ν

2Eν +M
, (2.6)

which can be plugged into the expression for Q:

Qmax =
√

2MTmax = 2Eν
1√

1 + 2Eν
M

≈ 2Eν , (2.7)

where the approximation assumes low-energy incoming neutrinos (2Eν �M).

For CEνNS to occur with relatively high probability, the neutrino has to be of

sufficiently low energy. As the energy gets higher, the probability of interacting

with individual nucleons rather than the whole nucleus increases (see section 2.1.2).

Neutrinos scatter off a nucleus coherently when h
Q

is greater than the size of the

nucleus, with h being the Planck constant and Q the momentum transfer. For a

6



medium-size nucleus, this makes CEνNS more likely for Q . 100 MeV (using c = 1),

and, since 0 < Q < 2Eν , for neutrinos with Eν . 50 MeV. Considering argon with

the nuclear radius R = 1.2A
1
3 fm = 4.1 fm (and using its diameter as the size of the

nucleus), the coherency is expected for Q . 150 MeV (which scales with A−
1
3 for

other nuclei).

CEνNS is an NC reaction and is mediated by the Z0 boson. Since the Z0 mass

(91.1876 GeV [T+18]) is much greater than the CEνNS energy scale (up to hun-

dreds of MeV), the following four-fermion effective Lagrangian can be used for the

interaction between the neutrino and a quark (approximated from J. Barranco et

al. [BMR07]):

LNCνq = −GF√
2

[
ν̄γµ

(
1− γ5

)
ν
] (
f qL

[
q̄γµ

(
1− γ5

)
q
]

+ f qR
[
q̄γµ

(
1 + γ5

)
q
])
, (2.8)

where q is the up or down quark, GF is the Fermi constant,

fuL =
1

2
− 2

3
sin2 θW , f

dL = −1

2
+

1

3
sin2 θW , f

uR = −2

3
sin2 θW , f

dR =
1

3
sin2 θW ,

θW is the Weinberg weak mixing angle.

2.1.2 CEνNS Cross Section

Using the Lagrangian in Equation 2.8, we can calculate the CEνNS differential cross

section [BMR07]:

dσ

dT
=
G2
FM

2π

{
(GV +GA)2 + (GV −GA)2

(
1− T

Eν

)2

−
(
G2
V −G2

A

)MT

E2
ν

}
, (2.9)

where M is the mass of the nucleus, T is the nuclear recoil energy (taking values

from 0 to 2E2
ν

M+2Eν
), Eν is the neutrino energy,

GV = [gpVZ + gnVN ]F V
nucl(Q

2),

7



GA = [gpA (Z+ − Z−) + gnA (N+ −N−)]FA
nucl(Q

2),

are the nuclear vector and axial-vector weak couplings, gpV = 1
2
− 2 sin2 θW and gnV =

−1
2
, are the vector weak couplings of the proton and the neutron, gpA = −1

2
and

gnA = 1
2
, are the axial-vector weak couplings of the proton and the neutron, Z and N

are the atomic number and the neutron number of the nucleus, Z+ and Z− are the

numbers of spin-up and spin-down protons, N+ and N− are the numbers of spin-up

and spin-down neutrons, and F V
nucl(Q

2) and FA
nucl(Q

2) are the vector and axial-vector

nuclear form factors, respectively. The form factor is the Fourier transform of the

corresponding density distribution.

For most nuclei, (Z+ − Z−) , (N+ −N−) � Z,N (the differences are 0 for sym-

metric isotopes), so the axial-vector component of the cross section can be neglected.

In addition, gpV = 0.0376 � gnV = 0.5 (using the sin2 θW value from M. Tanabashi

et al. [T+18]). Disregarding these smaller contributions (along with the second-order

T
Eν

term), Equation 2.9 simplifies to:

dσ

dT
=
G2
FM

8π
N2F 2(Q2)

(
2− 2T

Eν
− MT

E2
ν

)
, (2.10)

where F (Q2) ≡ F V
nucl(Q

2). The resulting N2 scaling of the cross section is a charac-

teristic feature of the CEνNS interaction.

The process is fully coherent when Q2 = 0 and the nuclear form factor F (Q2) = 1.

For non-zero energy transfer, F (Q2) < 1, and I use the Klein-Nystrand parameteri-

zation [KN99] here to quantify its value:

F (Q2) =
3 (sin(QRn)−QRn cos(QRn))

(QRn)3 (1 + a2
knQ

2)
, (2.11)

where Rn = 1.2A
1
3 fm is the nuclear radius and akn = 0.7 fm is the Yukawa-potential

range. Form factors for a range of isotopes are plotted in Figure 2.3. For most nuclei,
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Figure 2.3: Klein-Nystrand form factors plotted against the momentum transfer
(using c = 1) for multiple nuclei. Q does not exceed approximately 100 MeV for the
neutrino sources considered in this work.

the form factor drops precipitously above around 100 MeV/c (the heavier the nucleus,

the sharper the drop), drastically reducing the CEνNS cross section at high Q.

CEνNS experiments use neutrinos produced by either nuclear reactors or stopped-

pion sources (πDAR), for which four-momentum difference values vary from 0 to

Qmax =
√

2MTmax ≈ 2Emax
ν ≈ 10 (100) MeV for nuclear reactors (πDAR). There-

fore, the nuclear form factor is close to 1 for most neutrino interactions in the reactor

experiments, while the πDAR experiments are expected to observe noticeable devia-

tions from unity for their higher-energy neutrino interactions.

Equation 2.10 is plotted in Figure 2.4 for different nuclei and same neutrino energy.

The figure shows the main challenge of CEνNS detection: as the total cross section

quadratically increases with the neutron number, the end-point recoil energy drops,

requiring detectors with exceedingly low energy thresholds to observe it.

The differential CEνNS cross section can be integrated over recoil energy to get

9



Figure 2.4: Differential CEνNS cross sections for multiple isotopes and neutrinos
with Eν = 50 MeV.

a total cross section as a function of neutrino energy. Integrating Equation 2.10 and

plotting the result produces Figure 2.5 showing the total CEνNS cross section for a

number of isotopes. The cross-section values are larger than 10−40 cm2 at 50 MeV

even for the lighter nuclei.

2.1.3 Experimental Efforts

After CEνNS was predicted in 1974 by D. Z. Freedman [Fre74], multiple detection

approaches have been put forward. Despite the variety of the proposed detectors,

they all have to be extremely sensitive to nuclear recoils in the low-energy range.

However, unlike conventional neutrino detectors that usually operate on the ton-to-

Mton scale, CEνNS proposals often include kg-scale targets which is possible because

of the relatively large cross section.

Table 2.1 compares the neutrino sources used by experiments discussed here:

πDAR, nuclear reactors, Sun, supernovae. Figures 2.6, 2.7, 2.8, and 2.9 show their

10



Figure 2.5: Total CEνNS cross sections for multiple isotopes.

Source ν type Timing
πDAR νµ, ν̄µ, νe pulsed
Reactor ν̄e continuous
Sun νe continuous
Supernova all ν burst (O(10 s))

Table 2.1: Sources that produce neutrinos used in CEνNS studies.

respective energy and CEνNS-recoil spectra.

Detector technologies employed by CEνNS experiments include inorganic scintil-

lators, liquid noble gases (both scintillators and single- and dual-phase time-projection

chambers), bolometers, and semiconductors and are summarized in Table 2.2.

Dark-matter experiments have similar requirements for weakly-interacting-massive-

particle (WIMP [Sch19]) searches, since WIMP interactions are also expected to

produce low-energy nuclear recoils, making WIMP detectors also particularly well

suited for CEνNS detection. However, those detectors are usually located deep un-

derground and far from artificial sources of neutrinos to reduce backgrounds, which

makes them impossible to use in a manner similar to the previously mentioned exper-

11



Figure 2.6: πDAR neutrino spectra [Sch06] (left) and CEνNS recoils (right) in a
CsI detector in a COHERENT-like set-up (see Chapter 3).

Figure 2.7: Nuclear-reactor electron antineutrino spectra (left, data from
V. V. Sinev [Sin13]) and CEνNS recoils (right) in a 10-kg Ge detector located 10 m
from a 1000-MW reactor (with reactor composition from V. V. Sinev [Sin13]).

Figure 2.8: Solar neutrino spectra [Ser16] (left) and CEνNS recoils (right) in a 1-t
Xe detector.

12
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Figure 2.9: Supernova neutrino spectra [snb] (left) and CEνNS recoils (right) in a
1-t Xe detector.

Source Experiment Detector Location
πDAR COHERENT [A+a] CsI, LAr, HPGe, NaI, etc. USA
πDAR CCM [AA+a] LAr USA
Reactor CONNIE [AA+19] Si CCDs Brazil
Reactor CONUS [B+20] HPGe Germany
Reactor MINER [A+17a] Cryogenic Ge/Si USA
Reactor NEWS-G [A+18c] Spherical Proportional Counters Canada/France
Reactor NuCLEUS [S+17] Cryogenic CaWO4 Germany
Reactor RED-100 [A+20c] Dual-phase LXe Russia
Reactor RICOCHET [B+17] Ge, Zn bolometers France
Reactor TEXONO [S+16] p-PCGe Taiwan
Sun, SN Darkside-LM [A+18a] LAr Italy
Sun, SN LZ [A+20a] Dual-phase LXe USA
Sun, SN SuperCDMS [LA19] Cryogenic Ge/Si Canada
Sun, SN Xenon NT [A+17d] Dual-phase LXe Italy

Table 2.2: CEνNS-sensitive experiments.
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iments. Nevertheless, WIMP detectors can study CEνNS using astrophysical neutri-

nos with current-generation ton-scale experiments having sensitivity for supernova-

burst neutrinos [HCM03] and future multi-ton-scale experiments being able to observe

solar neutrinos [HKM12] (which is being investigated as an important background

for WIMP searches [BSFF14]).

2.1.4 COHERENT Measurements

The first observation of CEνNS was performed by the COHERENT collaboration in

2017 using a stopped-pion source [A+17c] (see Chapter 3 for a detailed description

of the experiment). The collaboration deployed a 14.6-kg CsI detector and neutrinos

from a stopped-pion source and detected 134±22 CEνNS events at a 6.7-σ confidence

level. Figure 2.10 shows the resulting energy and time distributions of the measured

neutrinos. The most significant sources contributing to the total uncertainty are the

CsI quenching-factor uncertainty (25%), statistics, and the neutrino-flux uncertainty

(10%).

The COHERENT collaboration performed another measurement in 2020 with a

24-kg liquid-argon detector and observed 159±43 CEνNS events [A+20b]. The statis-

tical significance of the result is 3.5 σ. In this case, the total systematic uncertainty is

dominated by the flux uncertainty (10%) and pulse-shape-discrimination calibration

uncertainty (7.8%).

2.1.5 CEνNS Beyond Standard Model

CEνNS is a well-understood SM process, which makes it an excellent laboratory

for studying physics beyond the SM (BSM). The number of ongoing and proposed

CEνNS experiments (see section 2.1.3) should also result in multiple precision mea-

surements of CEνNS on different nuclei.
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Figure 2.10: Energy and time distributions (after steady-state background sub-
traction) of the CEνNS measurement performed by the COHERENT collabora-
tion [A+17c]. The points are the data and the histograms are the distributions
predicted by the SM. The right and the left columns show the distributions for the
time periods when the source was and was not producing neutrinos, respectively.

2.1.6 Applications of CEνNS

The neutrino is a unique particle that, unlike other known particles, does not usually

interact on its way from where it was produced to the detector. This property leads

to a great number of possible applications. Unfortunately, this attribute also greatly

limits the possibilities, because it makes neutrinos difficult to observe. Because the

CEνNS cross section is orders of magnitude higher than other neutrino cross sections

at the same energy (which is energy dependent and only true below about 50 MeV),

there are enhanced applications.

Being an NC interaction, CEνNS is flavor independent and can also greatly com-

plement other neutrino measurements, most of which detect charged-current reac-

tions.

15



2.2 Non-Standard Neutrino Interactions

Non-standard neutrino interactions (NSI) are a category of BSM physics that includes

modifications to the SM neutrino interactions. NSI can contribute to either CC or

NC interactions, but in this work only NC-modifying NSI are considered because

they can mimic SM CEνNS events.

2.2.1 Heavy-Mediator NSI

NSI discussed here are generated by a neutral electroweak boson with its mass much

greater than the energy scale of the reaction. The resulting process is a new neutral-

current interaction that in general allows the participating neutrino to change its

flavor, as in:

να + f → νβ + f, (2.12)

where να is the incoming neutrino, νβ is the outgoing neutrino, and f is the interacting

fermion.

The Lagrangian term that describes such four-point NSI interaction is the follow-

ing [CDGG+17]:

LfPαβ = −2
√

2GF ε
fP
αβ

[
ν̄αγ

µ
(
1− γ5

)
νβ
] [
f̄γµPf

]
, (2.13)

where P is the projection operator (PL = (1− γ5) or PR = (1 + γ5)), GF is the Fermi

constant, and εfPαβ is the corresponding NSI coupling. The α and β flavors can be e,

µ, or τ , and f is mostly e, u, or d for normal matter. A diagram for this process is

shown in Figure 2.11.

2.2.2 NSI in Neutrino Oscillations

NSI affect both neutrino interactions and propagation in matter, the latter of which

is able to modify neutrino oscillations. The Hamiltonian describing neutrino propa-
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Figure 2.11: Diagram of NSI.

gation is the following [CDGG+17]:

Hν = Hvac+Hmat =
1

2E
Uvac

0
∆m2

21

∆m2
31

U †vac+
√

2GFNe(x)

1 + εee εeµ εeτ
ε∗eµ εµµ εµτ
ε∗eτ ε∗µτ εττ

 ,

(2.14)

where Hvac and Hmat are the Hamiltonians for neutrino propagation in vacuum and

matter respectively, E is the neutrino energy, ∆m2
ij = m2

i − m2
j are the differences

between squares of the respective neutrino-mass-state masses,

Uvac =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 (2.15)

is the vacuum neutrino mixing matrix [T+18] with cij = cos θij, sij = sin θij, and

θij the neutrino mixing angles, δ is the CP-violation phase, Ne(x) is the cumulative

electron density along the neutrino path at location x,

εαβ =
∑

f=u,d,e

Yf (x)εfVαβ (2.16)

are the effective NSI couplings with Yf (x) being the relative density of f (relative

to electron density, so Ye(x) = 1). The Hamiltonian for antineutrino propagation is

H ν̄ = (Hvac −Hmat)
∗.
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Adding a constant term to Hν does not affect the propagation of neutrinos, mak-

ing neutrino oscillations sensitive to differences of diagonal couplings, εαα−εββ, rather

than their individual values.

The CPT symmetry results in identical neutrino evolution for both Hν and

−(Hν)∗. The following substitutions transform Hν into −(Hν)∗:

∆m2
31 → −∆m2

31 + ∆m2
21 = −∆m2

32,

sin θ12 → cos θ12,

δ → π − δ,

(εee − εµµ)→ −(εee − εµµ)− 2,

(εττ − εµµ)→ −(εττ − εµµ),

εαβ → −ε∗αβ (α 6= β).

(2.17)

These changes flip the neutrino mass ordering, θ12 octant and the CP-violation phase,

creating ambiguity in their determination if NSI couplings are not measured indepen-

dently. This effect is called generalized mass ordering degeneracy [CS16] and cannot

be resolved using only neutrino-oscillation measurements.

2.2.3 Neutrino Oscillation and Fixed-Target Results

NSI couplings have been constrained in neutrino oscillation and fixed-target exper-

iments. A good summary of the NSI knowledge before the publication of the first

COHERENT results is presented in P. Coloma et al. [CDGG+17]. The paper did

a global fit of the available neutrino-experiment data and produced Figure 2.12.

The neutrino-oscillation fit included reactor (KamLAND, CHOOZ, Palo Verde, Dou-

ble CHOOZ, Daya Bay, RENO, Bugey, ROVNO, Krasnoyarsk, ILL, Gösgen, and

SRP), solar (Chlorine, Gallex/GNO, SAGE, Super-Kamiokande, Borexino, SNO),

atmospheric (Super-Kamiokande), and long-baseline (MINOS and T2K) neutrino
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Figure 2.12: Global-fit χ2 distributions for twelve NSI couplings from P. Coloma
et al. [CDGG+17]. The solid blue and dashed red lines correspond to the large-mix-
ing-angle (LMA) and LMA-Dark solutions, respectively. The former is preferred by
the SM interpretation of neutrino oscillation experiments, and the latter appears for
certain values of NSI couplings [MTV06].

measurements. In addition to those results, the global fit included two neutrino

scattering experiments: NuTeV and CHARM.

Based on that figure, the weakest constraints exist for the εdVee and εuVee couplings,

since their χ2 profiles are wider than the profiles corresponding to other NSI couplings.

The only experiment that was used to unambiguously determine the εdVee and εuVee

couplings is CHARM, resulting in a limit in Figure 2.13.

CHARM [D+86] consisted of a calorimeter and muon spectrometer observing

neutrinos produced by the 400-GeV CERN-SPS proton beam interacting with thick

copper targets. The experiment measured charged- and neutral-current cross sections

for electron neutrinos and antineutrinos and produced the following ratio:

Re =
σ(νeN → νeX) + σ(ν̄eN → ν̄eX)

σ(νeN → eX) + σ(ν̄eN → ēX)
= 0.406± 0.140, (2.18)
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Figure 2.13: 1-σ, 2-σ, and 3-σ regions allowed by the CHARM data for the εdVee and
εuVee NSI couplings from P. Coloma et al. [CDGG+17].

which can be rewritten as

Re = (gVu + εuVee )2 + (gAu )2 + (gVd + εdVee )2 + (gAd )2, (2.19)

where gPq are the SM electroweak couplings. Combining Equations 2.18 and 2.19

results in a constraint on the εdVee and εuVee couplings.

2.2.4 Constraining NSI with CEνNS

CEνNS experiments measure neutrino scatters off nuclei. If the source neutrinos are

of electron flavor, they provide an opportunity for measuring the εdVee and εuVee NSI

couplings.
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The corresponding NSI modify the nuclear vector electroweak couplings in the

CEνNS differential cross-section expression [BMR07],

dσ

dT
=
G2
FM

2π

{
(GV +GA)2 + (GV −GA)2

(
1− T

Eν

)2

−
(
G2
V −G2

A

)MT

E2
ν

}
, (2.20)

in the following way:

GV =
[(
gpV + 2εuVee + εdVee

)
Z +

(
gnV + εuVee + 2εdVee

)
N
]
F V
nucl(Q

2).

One method of visualizing the effect of the NSI on CEνNS is to plot the cross-

section modification factor, dσCEνNS
dT

(
εdVee , ε

uV
ee

)
/
dσSMCEνNS

dT
, as a function of the εdVee and

εuVee couplings. This is done for the COHERENT CsI detector in Figure 2.14. As

expected from Equation 2.20 and its quadratic dependence on the NSI couplings, the

pairs of the NSI couplings resulting in the SM cross-section value form two lines. The

NSI suppress the cross section between the lines and enhance it otherwise. There-

fore, a measurement of the CEνNS cross section can put a limit on the allowed NSI

couplings.

2.2.5 COHERENT NSI Result

The COHERENT collaboration used its CsI CEνNS result to constrain the εdVee and

εuVee NSI couplings [A+17c], with the allowed values shown as the blue band in Fig-

ure 2.15.

The COHERENT measurement has been analyzed by other groups, some of which

performed the following NSI studies:

• Ref. [Giu] used the COHERENT data (including the spectral and temporal

information) to constrain other NSI couplings, producing Figure 2.16;

• Ref. [CGGMS17] added the COHERENT data to the global oscillation fit and

plotted the result as solid lines in Figure 2.17.
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Figure 2.14: Cross-section modification dependence on the NSI couplings for the
COHERENT CsI detector.

2.2.6 Light-Mediator NSI

It is also possible to remove the heavy-mediator assumption and instead consider NSI

models produced by the following interaction Lagrangian [DDL+17]:

LfP
νZ′ = 2Z

′
µ

(
gνZ′ ν̄γµ

(
1− γ5

)
ν + gfZ′ f̄γµPf

)
, (2.21)

where Z
′
is the new mediator, gνZ′ and gfZ′ are the interaction couplings of neutrinos

and other fermions, respectively. This Lagrangian results in the following neutral-

current reaction between a neutrino ν and a fermion f (shown in Figure 2.18):

ν + f → ν + f. (2.22)

This interaction can also contribute to CEνNS, modifying the nuclear electroweak

couplings in Equation 2.20 and, unlike the heavy-mediator case, making them recoil-
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Figure 2.15: Regions of the εdVee –εuVee parameter space allowed by the COHERENT
and CHARM experiments [A+17c]. NSI couplings not shown are set to 0.

23



Figure 2.16: COHERENT fit χ2 distributions for NSI couplings with (blue solid
lines) and without timing information (red dashed lines) from C. Giunti [Giu].
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Figure 2.17: Neutrino-oscillation-fit χ2 distributions for NSI couplings with (solid
lines) and without COHERENT (dashed lines) from P. Coloma et al. [CGGMS17].
The blue and red lines correspond to the LMA and LMA-D solutions, respectively.

Figure 2.18: Diagram for light-mediator NSI.
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energy-dependent as well:

GV =

[gpV +
gνZ′gpZ′

√
2GF

(
2TM +M2

Z′

)
Z+

gnV +
gνZ′gnZ′

√
2GF

(
2TM +M2

Z′

)
N

]
F V
nucl(Q

2),

where MZ′ is the mass of the mediator and gpZ′ and gnZ′ are the NSI couplings of

the proton and the neutron, respectively.

The COHERENT collaboration plans to use COHERENT’s data to constrain

light-mediator NSI in a future analysis. Some of the analyses in the literature already

performed include:

• Ref. [LM18] used the COHERENT data to study the coupling and mass of a

Z
′

boson that interacts with neutrinos, first-generation quarks, and the muon

and has a universal vector coupling;

• Ref. [ADD+18] constrains models with a Z
′

boson using the COHERENT data

and estimates the sensitivity of future CEνNS experiments;

• Ref. [DLSS19] performed a study with the COHERENT data and a Z
′

boson

that couples to the up and down quarks and neutrinos with gu = gd = gν .

2.3 Neutrino Magnetic Moment

Another example of BSM is enhancement of the neutrino magnetic moment. Neutrino

physics currently predicts negligible neutrino magnetic moments, so an observation of

a non-zero value would result in a significant disagreement between the SM prediction

and the experimental result.
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Figure 2.19: Loop SM diagrams contributing to the neutrino magnetic mo-
ment [GS15].

2.3.1 Neutrino Magnetic Moment in SM

In the SM, the dipole magnetic moment of the neutrino is calculated from the dia-

grams in Figure 2.19. The neutrino magnetic moment is strictly 0 in the absence of

right-handed neutrinos, but minimal modifications to the SM that add right-handed

neutrinos result in the following approximate value [GS15]:

µν ≈
3eGFmν

8
√

2π2
≈ 3.2 · 10−19

(mν

eV

)
µB, (2.23)

where e is the electric charge of the electron, GF is the Fermi constant, mν is the

neutrino mass, and µB is the Bohr magneton.

Because of the scale of the neutrino mass (mν < 1 eV), the neutrino magnetic

moment in this minimally extended SM is impossible to observe with the currently

available technologies.

2.3.2 BSM Neutrino Magnetic Moment

BSM theories can produce neutrino-magnetic-moment values many orders of magni-

tude larger than the SM prediction. The following are several such models and their
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predicted neutrino magnetic moments:

• left-right symmetric models of electroweak interactions suggest magnetic-moment

values as large as µν ≈ 10−10µB [Raj90];

• Minimal Supersymmetric Standard Models predict values µν < 10−12µB [AIIN14];

• arguments from “naturalness” result in upper bounds of µν < 10−14µB [BCRM+05].

2.3.3 Current Experimental Constraints

A non-zero neutrino magnetic moment manifests itself as a distortion in the measured

recoil spectrum. Most experiments search for an excess in electron recoils to constrain

neutrino magnetic moments using electron antineutrinos from reactors, neutrinos of

different flavors produced by accelerators, and electron neutrinos from the Sun.

Table 2.3 summarizes the direct experimental knowledge of neutrino magnetic

moments. The best 90%-CL limits for each flavor are the following:

• electron neutrino – µνe < 2.9 · 10−11µB;

• muon neutrino – µνµ < 6.8 · 10−10µB;

• tau neutrino – µντ < 3.9 · 10−7µB.

Solar-neutrino experiments constrain an effective neutrino magnetic moment that

can be written in terms of magnetic moments of neutrinos in the flavor basis as the

following [A+17b]:

µ2
S = P 3νµ2

νe +
(
1− P 3ν

) (
cos2 θ23 · µ2

νµ + sin2 θ23 · µ2
ντ

)
, (2.24)

where P 3ν is the νe survival probability, θ23 is a neutrino mixing angle. Therefore, the

90%-CL limit µS < 2.8 · 10−11µB results in the following constraints on the magnetic
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Method Experiment Limit (µB) CL
Reactor ν̄e-e

− Krasnoyarsk [VVG+92] µνe < 2.4 · 10−10 90%
Rovno [DCP+93] µνe < 1.9 · 10−10 95%
MUNU [D+05] µνe < 9 · 10−11 90%
TEXONO [W+07] µνe < 7.4 · 10−11 90%
GEMMA [BBE+12] µνe < 2.9 · 10−11 90%

Accelerator νe-e
− LAMPF [A+93] µνe < 1.1 · 10−9 90%

Accelerator (νµ, ν̄µ)-e− BNL-E734 [A+90] µνµ < 8.5 · 10−10 90%
LAMPF [A+93] µνµ < 7.4 · 10−10 90%
LSND [A+01] µνµ < 6.8 · 10−10 90%

Accelerator (ντ , ν̄τ )-e
− DONUT [S+01] µντ < 3.9 · 10−7 90%

Solar νe-e
− Super-Kamiokande [L+04] µS(Eν & 5 MeV) < 1.1 · 10−10 90%

Borexino [A+08] µS(Eν . 1 MeV) < 2.8 · 10−11 90%
Astrophysical ν N. Viaux et al. [VCS+13] µν ≤ 4.5 · 10−12 95%

S. Arceo-Dı́az et al. [ADSZJ15] µν ≤ 2.2 · 10−12 68%

Table 2.3: Experimental constraints on neutrino magnetic moments (updated from
C. Giunti and A. Studenikin [GS15]).

moments of the neutrino flavor states: µνe < 3.9 · 10−11µB, µνµ < 5.8 · 10−11µB, and

µντ < 5.8 · 10−11µB.

In addition to neutrino scattering limits, astrophysical data can be used to con-

strain neutrino magnetic moments. G. G. Raffelt and D. S. P. Dearborn [DLSS19]

suggested a method of estimating the neutrino magnetic moment by looking at the

brightness of the tip of the red-giant branch, which would be increased by the non-

zero magnetic moment. This type of measurement results in the strongest limit,

which is currently µν < 2.2 · 10−12µB at 68% CL.

2.3.4 Neutrino-Magnetic-Moment Contribution to CEνNS

The differential cross section of the electromagnetic neutrino-nucleus interaction for

a spin-zero nucleus is [VE89]

dσ

dT
=
πα2µ2

νZ
2

m2
e

(
1− T/Eν

T
+

T

4E2
ν

)
, (2.25)
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Figure 2.20: Differential CEνNS cross sections (solid lines) and electromagnetic
cross sections for two non-zero neutrino-magnetic-moment values (dotted and dashed
lines) as functions of nuclear recoil for three future COHERENT detectors (see Chap-
ter 3).

where T is the nuclear recoil energy, α is the fine-structure constant, µν is the neu-

trino magnetic moment, Z is the atomic number of the nucleus, me is the electron

mass, and Eν is the incoming neutrino energy. Because of the 1
T

behavior of the cross

section at low energy, the number of the predicted events drops as the detector thresh-

old increases. CEνNS experiments combine very low thresholds with intense neutrino

sources, thus making them also good for neutrino-magnetic-moment searches. Fig-

ure 2.20 shows πDAR flux-weighted electromagnetic cross sections alongside CEνNS

cross sections for NaI, Ar, and Ge targets as functions of nuclear recoil energy.

Compared to elastic neutrino scattering on electrons, the electromagnetic neutrino

cross section on nuclei is enhanced by a factor of Z. On the other hand, nuclear

recoils are quenched relative to electron recoils in all detectors considered here with a

quenching factor on the order of 10%. Therefore, depending on the target, a nuclear-

recoil measurement can be comparable to (and even exceed) an electron-recoil one.
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Chapter 3

COHERENT

The COHERENT experiment [A+a] has produced the data used in this work. The

main goal of the experiment is the detection and characterization of CEνNS over a

range of target nuclei. For that purpose, the COHERENT collaboration has installed

multiple detectors at the Spallation Neutron Source (SNS) of the Oak Ridge National

Laboratory.

Figure 3.1 shows the location of the CsI detector, as well as other current and

future COHERENT detectors.

3.1 SNS

The SNS produces neutrons via a 1-GeV proton beam of high intensity impinging

on a mercury target at 1.4 MW, which also generates on average 0.08–0.09 negative

pions per proton, that in turn decay to muons, electrons, and neutrinos (Figure 3.2).

Therefore, as a side effect, the SNS can also be used as a very intense source of

neutrinos. In addition to the sheer number of neutrinos emitted by the SNS, the

SNS target is thick enough for most of the pions to decay at rest, resulting in a

highly isotropic source of muon neutrinos and antineutrinos and electron neutrinos

with well-understood spectra (Figure 3.3).

The SNS beam bombards the target with the frequency of 60 Hz, with the result-

ing simulated neutrino time distributions shown in Figure 3.4. The short duty cycle

of the facility allows to achieve suppression of beam-unrelated backgrounds on the

order of 103–104.

ORNL provided the COHERENT collaboration with space for detectors 19–30 m
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Figure 3.1: COHERENT detectors and their positon relative to the SNS [A+a].

Figure 3.2: Neutrino production at the SNS [Sch17].
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Figure 3.4: Simulated SNS neutrino timing distributions [A+a].
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from the SNS target and excellent neutron shielding that has been used by the col-

laboration (Figure 3.1).

3.2 CsI

The first COHERENT CEνNS detector that was deployed at the SNS from 2015

to 2019 is a 14.6-kg CsI[Na] detector. The collaboration used its data to make a

conclusive first observation of CEνNS in 2017 [A+17c].

The detector was located 19.3 m from the SNS target. The light created inside of

the CsI[Na] crystal by charged particles was read out by a PMT attached to its top

face. In order to shield the detector, it was surrounded by high-density polyethylene

(HDPE), lead, active muon veto, and water (schematically represented in Figure 3.5).

The output from the muon veto was read out as a separate channel.

3.3 CENNS-10

CENNS-10 is the second COHERENT detector constructed for observing CEνNS.

The detector was installed in a location 29 m away from the SNS target in 2016,

underwent an upgrade to increase its light collection in 2017, and has been taking

physics data since then [A+a]. It uses argon scintillation to search for low-energy

nuclear recoils.

CENNS-10 is read out by two PMTs located on the opposite sides of the cylinder

containing 24 kg of the active fiducial liquid-argon mass. The detector is shielded by

water, copper, and lead.
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Figure 3.5: CsI detector and its shielding: light yellow is the CsI[Na] crystal, or-
ange is the PMT, light grey is HDPE, hatched grey is low-background lead, grey is
contemporary lead, yellow is the muon veto, green is aluminum, blue is water [Sch17].
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Figure 3.6: CENNS-10 detector and its shielding [A+a].
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3.4 Future Detectors

COHERENT has secured funding to deploy two additional detectors, a 3388-kg

NaI[Tl] detector and a 16-kg Ge detector, in the next two years and is developing

a larger version of CENNS-10, CENNS-750, a 610-kg liquid-argon detector. Adding

these detectors will allow COHERENT to detect CEνNS in a wide variety of isotopes

(from the lightest nucleus, argon with A = 40, to the heaviest, cesium with A = 133)

and start precision measurements on the scale of several years, making it a great

facility for testing the Standard Model.

3.5 Backgrounds and Systematics

The backgrounds shared by all of the COHERENT detectors are usually divided into

steady-state backgrounds and beam-related (or beam-on) backgrounds.

The first group affects the detectors no matter whether the beam is on or off

and includes cosmic rays and 511-keV gammas from the hot-off-gas (HOG) pipe.

These backgrounds are possible to measure when the beam is off and then subtract

from the data. However, they still contribute to the statistical uncertainty and can

flood the signal. The overburden of 8 meters of water equivalent reduces the cosmic-

ray background and is not going to be changed; and to protect against the HOG-

pipe background, ORNL is constructing a lead shield around the pipe that should

significantly reduce the background.

The beam-on backgrounds are more complicated to mitigate. They are further

divided into beam-related neutrons (BRN or prompt neutrons) and neutrino-induced

neutrons (NINs). The former are generated by fast neutrons produced by the SNS

and arrive shortly after the beam hits the target. Their timing is very similar to

the prompt neutrinos (νµ), but the delayed neutrinos (ν̄µ and νe) are mostly free of

37



Systematic CsI CENNS-10
Quenching factor 25% 1%
Neutrino flux 10% 10%
Form factor 5% 2%
Other 5% 9%

Table 3.1: Systematic uncertainties for the CsI and CENNS-10 measurements.

this background. Understanding this background better will help in using prompt

neutrinos to study CEνNS. COHERENT has deployed several detectors (a two-plane

neutron scatter camera, SciBath, and the currently running MARS detector) to mea-

sure BRN.

NINs are created by the same neutrinos that are detected via CEνNS in the

target interacting in the shielding, so their timing is identical to CEνNS and can-

not be used to reduce this background. In addition, the neutrino interaction itself

that produces NINs in lead and iron has not been experimentally observed (the CsI

neutron-background measurement [A+17c] resulted in an indication of NINs in lead).

To solve this problem, COHERENT has deployed the Neutrino Cubes – detectors

that use liquid-scintillator cells to detect neutrons generated in the target surround-

ing them Currently there are two Neutrino Cubes: one with a lead target and one

with an iron one. The collaboration is in the process of analyzing their data.

The systematic uncertainty that had the biggest contribution to the total error of

the CsI measurement was the quenching-factor uncertainty (a comparison of several

important sources of systematic uncertainties for the CsI and CENNS-10 measure-

ments is presented in Table 3.1). The currently available data for CsI and other

targets has significant variation, which motivates new measurements. The COHER-

ENT collaboration is interested in such measurements and has several collaborators

actively involved with creating and using a facility for determining quenching factors

for a number of relevant isotopes at the Triangle Universities Nuclear Laboratory.
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The next worst systematic uncertainty for CsI was the neutrino-flux error. The

neutrino flux produced by the SNS is difficult to simulate and is known to about 10%.

In order to reduce this uncertainty, the collaboration is designing a D2O detector that

is proposed to use a relatively well-known νe CC neutrino cross section on deuterium

to independently determine the SNS neutrino flux.

All these efforts will eventually help to significantly reduce systematic uncertain-

ties for CEνNS measurements.
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Chapter 4

Data Acquisition and Processing

COHERENT has already collected a significant amount of data with many detectors.

Figure 4.1 shows the evolution of statistics in terms of the number of protons on target

(POT) available for each COHERENT detector. Each proton from the SNS beam

hitting the target produces on average 0.08–0.09 neutrinos per flavor (this quantity

depends on the average proton energy and has been slowly increasing at the SNS).

Since the average proton energy and beam power are stored for each second of the

time the SNS is operational, POT is easy to convert to the neutrino flux. Therefore,

the black curve in Figure 4.1 is proportional to the number of neutrinos emitted by

the SNS, and the curves corresponding to the COHERENT detectors are proportional

to the number of neutrinos impinging upon each respective detector. Due to the SNS

being a very intense source of protons, the POT delivered by the beam is orders of

magnitude higher compared to other experiments detecting neutrinos produced by

accelerators.

POT is plotted in Figure 4.1 for the following detectors that operated at the

COHERENT site at the SNS:

• Neutron Scatter Camera – a detector that measured neutron backgrounds in

2013–2016;

• LS in CsI shield – two liquid-scintillator cells that measured neutron back-

grounds directly in the CsI shielding and took data for several months before

the CsI detector was installed there in 2015;

• CsI – a CsI[Na] CEνNS detector that took data in 2015-2019 and produced the
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Figure 4.1: Number of protons on target recorded by different COHERENT detec-
tors as a function of time as of August 2019. Dotted lines show detectors that have
been removed. CEνNS detectors are represented by thick lines.

first observation of CEνNS;

• SciBath – a detector that measured neutron backgrounds in 2015;

• Pb Nube – the Lead Neutrino Cube, a detector measuring neutrino-induced

neutrons (see Section 3.5) produced in lead, has been taking data since 2016;

• NaIvE – a NaI[Tl] detector measuring charged-current neutrino-127I interactions

and serving as a prototype for a larger CEνNS detector, started taking data in

2016;

• CENNS-10 – a liquid-argon CEνNS detector that has been taking data since

2017 and has produced its first CEνNS result;

• Fe Nube – the Iron Neutrino Cube, a detector measuring neutrino-induced

neutrons produced in iron, has been taking data since 2017;

• MARS – a detector measuring neutron backgrounds since 2017.
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4.1 Data Quality

The COHERENT collaboration implemented several systems to monitor the process

of data acquisition and the status of each individual detector, as well as estimating

the quality of the recorded data. The author of this work actively contributed to one

such system, which is going to be described in this section.

The system has been daily processing all new data collected by the CsI, MARS,

NaIvE, and Neutrino-Cube detectors, and injecting the resulting output (as well as

voltages and currents for the NaIvE and Neutrino-Cube PMTs) into an InfluxDB

database [inf]. Then the database is connected to Grafana [gra] that is used to

visualize that information as dashboards with plots showing time evolution of the

monitored parameters.

The dashboards are usually inspected daily to find and solve potential problems

as quickly as possible, despite the plotted information lagging a day or two behind

the data acquisition of the corresponding detectors. The simplest error that can be

detected this way (and tends to happen several times a year) is an issue with the

data being copied to the storage disk where it can be remotely accessed.

An example of that happening is a couple of data points missing around March 30

in Figure 4.3. That was caused by a problem with changing the data storage location

and has been fixed since.

Event rates are the most useful values that are being monitored by the system

and reflect well the condition of the detector and the experimental hall. Most of the

rates are sensitive to the environmental gamma background and can be also used to

monitor the beam activity that is correlated with the background. For instance, the

beam started ramping up in the beginning of April, and that can be seen in the event

rates of all of the monitored detectors (MARS, NaIvE, the Neutrino Cubes, and their

corresponding Grafana dashboards).
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Figure 4.2: CsI Grafana dashboard.

When the event rate in one detector significantly changes independently of other

detectors and the SNS beam, that may indicate a problem with this detector. In this

case, looking at rates of individual PMTs or subsystems, as well as other monitored

parameters such as baselines and voltages, can help understanding the issue.

4.1.1 CsI

The CsI detector has stopped taking data, and, therefore, the corresponding Grafana

dashboard is no longer being updated. When it was still active, the monitored CsI

values were the trigger rate, the muon-veto count rate, and two single-photoelectron

fit parameters. Figure 4.2 shows the Grafana dashboard with a month of the CsI

data from 2019. One data point was added every day to each plot in the dashboard.

4.1.2 MARS

The MARS Grafana dashboard (Figure 4.3) contains plots for the total trigger rate,

as well as trigger rates, baselines, and baseline standard deviations for each PMT
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Figure 4.3: MARS Grafana dashboard.

and timing channel (“event 39” and “event 61”). Every day a new data point with

all of the monitored values is injected into the corresponding database.

4.1.3 NaIvE

The NaIvE Grafana dashboard (Figure 4.4) is used to monitor the individual-channel

rates, baselines, baseline standard deviations, peak high indices (the waveform tick

corresponding to the ADC maximum), and pile-up rates. Despite the NaIvE data

being processed daily, the granularity of the injected data is 15 minutes.

Due to a yet-unidentified issue in the monitoring script, only about half of the

data are currently being injected into the database, which manifests itself as regular

several-hour-long gaps in the plots of the monitored values.

4.1.4 Neutrino Cubes

The dashboard for the Neutrino Cubes is shown in Figure 4.5 and plots the total

trigger rate, run duration, and individual-channel baselines for each physics run. In
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Figure 4.4: NaIvE Grafana dashboard.

addition to 24 physics runs, the Neutrino-Cube DAQ also takes three sets of check

runs every day. These runs have a chance to run at the beginning of any hour and

change the trigger to test each LS-cell and muon-veto channel and every muon-veto

panel. The Grafana dashboard plots rates for these checks.

4.1.5 Voltages and Currents

Finally, there is a Grafana dashboard with voltages and currents for each channel of

the Neutrino-Cube and NaIvE detectors (Figure 4.6). These values are being read

out daily from the high-voltage supply used by the detectors and plotted for each

hour.

4.2 CsI Data

Detailed information about the CsI data-taking procedures, data processing, and

CEνNS analysis is available in B. J. Scholz’s PhD thesis [Sch17] and G. C. Rich’s

PhD thesis [Ric17].
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Figure 4.5: Neutrino-Cube Grafana dashboard.

Figure 4.6: Grafana dashboard with channel voltages and currents.
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Figure 4.7: CsI waveform [Sch17]. POT is the external-trigger time, C (AC) PT is
the “pretrace” region and C (AC) ROI is the region of interest for the “coincident”
(“anti-coincident”) analysis.

A NI-5153 digitizer was used to read out the CsI PMT (Hamamatsu R877-100)

and sum the output of the muon veto. The two channels were recorded with the

sampling frequency of 500 MS/s for 70-µs each time the external 60-Hz SNS trigger

(“event 39”) was received. The dynamic range of the electronics allowed it to process

events starting with single photoelectrons to about 400 keV, with the digitizer reach-

ing saturation around 60 keV. A linear gate was used to prevent the data acquisition

from starting a 3-s reset when an event with more than 500 keVee energy deposition

occurred by closing for 1.6 ms. An example of the recorded waveform is shown in

Figure 4.7.

A set of cuts were applied to the data. Their effect is summarized in Figure 4.8.

“Quality” cuts remove events with coincident muon-veto signals and events occur-

ring during the dead time of the electronics or exceeding the digitizer range. The

“afterglow” cut removes events with more than three peaks in the “pretrace” (a 40-µs

window preceding the region of interest), reducing the number of events caused by
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Figure 4.8: Fraction of events passing CsI cuts [A+17c]. The grey band is the
uncertainty of the total acceptance curve.

a previous energy deposition. The “Cherenkov” cut requires at least 8 peaks in the

regions of interest and is applied to remove events containing only Cherenkov light

in the PMT window, PMT dark current and afterglow. The “Risetimes” cut uses an

integrated scintillation curve constructed for each event to discard events based on

their time profile.

The steady-state background was estimated by defining an additional (“anti-

coincident” – AC) region of interest that ended where the primary (“coincident” – C)

region of interest began, thus including none of the signal. Both regions of interest

were processed in exactly the same way. The C analysis contained the signal and

the steady-state background, while the AC analysis measured just the steady-state

background (Figure 4.9).

The beam-related background was measured by two 1.5-liter liquid-scintillator

(EJ-301) cells placed in the same shielding before the CsI detector was installed and

recording 171.7 beam-on days of data. This measurement was used to constrain
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Figure 4.9: CsI steady-state background measured by looking at AC beam-on data
(plotted using code and data from the COHERENT data release [A+b]).
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Figure 4.10: CsI beam-on-background time (left) and energy (right) distribu-
tions obtained from the EJ-301 measurement (taken from the COHERENT data
release [A+b]).

both prompt-neutron background (Figure 4.10) and NIN background, with the lat-

ter determined to contribute negligibly to the total background and removed from

consideration for the CsI analysis. The measured prompt-neutron background was

simulated in the CsI geometry and is predicted to be 0.92± 0.23 events/GWhr.

Subtracting the number of AC beam-on events (405) and the expected beam-

on background (6) from the total count of C beam-on events (547), we obtain 136

CEνNS events. A two-dimensional likelihood fit was also performed, resulting in

134 ± 22 CEνNS events at a 6.7-σ confidence level. The fractional uncertainty of

this measurement combines the flux (10%), form-factor (5%), QF (25%), and cut-

acceptance (5%) uncertainties and adds up to a total of 28%. The predicted number

of CEνNS events is 173.

In addition to the analysis described above, a part of the COHERENT collabora-

tion performed another independent analysis of the same CsI data. Results obtained

by that group confirmed the observation of CEνNS with similar statistical signifi-

cance.
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4.3 CENNS-10 Data

The first several months of data taking with the CENNS-10 detector constituted the

engineering run [A+19], the data from which were used to characterize the detector

and its backgrounds. After that run ended, the detector underwent an upgrade with

the goal of increasing its light yield and reducing the backgrounds. The collected data

were also used to constrain the CEνNS signal, resulting in a 68%-CL cross-section

limit of < 3.4 · 10−39 cm2 (about twice the SM prediction).

For the current data-taking period (after the upgrade), the CENNS-10 detector

is recording 33-µs waveforms around the external trigger [A+20b]. A pulse-finding

algorithm is used to find signals in the waveforms and assign them energy and timing

information.

The time evolution of scintillation in argon depends on the particle ionizing it,

which allows for determining the particle type based on the scintillation time profile.

Therefore, in addition to integrating events to get an estimate for their energy, a

fraction of energy in the first 90 ns (F90) is used as a pulse-shape discrimination

parameter (PSD) in this analysis. PSD makes distinguishing between nuclear and

gamma recoils possible, as shown in Figure 4.11.

The event energy is reconstructed using the measured light yield of 4.6 ± 0.4

obtained from gamma calibrations with 83mKr, 241Am, and 57Co sources.

Events are selected for further processing based on a variety of criteria including

cuts on baseline, saturation, pile-up, amount of light in each PMT, energy, time, and

PSD. The acceptance curve after applying all of the cuts is shown in Figure 4.12.

The steady-state background is estimated by processing events that are recorded

14 ms after the beam trigger. Cosmogenic 39Ar produces electrons inside the detector

and has the largest contribution to this background component.

The beam-related-neutron background was estimated using the CENNS-10 engineering-
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Figure 4.11: PSD distribution for CENNS-10 calibration with an AmBe
source [A+20b]. Neutron recoils form a band around F90 of 0.7, and gammas re-
sult in F90 of approximately 0.3.

Figure 4.12: Acceptance of the two CENNS-10 analyses [A+20b]. The analysis used
in this work is Analysis A.
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Figure 4.13: Neutron time distributions from the CENNS-10 engineering
run [A+19]. Strobe triggers are events recorded with a constant time offset from
the beam triggers and should not contain prompt neutrons. Average POT shape is
the SNS-beam time profile.

run data [A+19], which resulted in Figure 4.13.

Unlike the CsI analysis, in which all systematic uncertainties were assigned to the

measured value, the CENNS-10 analysis separates out the systematics affecting the

prediction, assigning the rest to the CEνNS number calculated from the likelihood

fit. The first group is divided into 1.0% from the value of the argon quenching factor,

0.8% from calibrations with gamma sources, 3.6% from the detector efficiency, 7.8%

from the prompt light fraction, 2.0% due to the form-factor uncertainty, and 10%

from the neutrino-flux uncertainty. The total CEνNS rate uncertainty is 13%.

The uncertainties affecting the fit result are 4.5% from the energy dependence

of F90, 2.7% from the neutrino arrival-time uncertainty, 5.8% from the BRN energy

shape, 1.3% from the BRN arrival-time mean uncertainty, and 3.1% from the BRN
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arrival-time width uncertainty. The total fit uncertainty is 8.5%.

A likelihood analysis that includes the timing, energy, and PSD information from

the processed data is then performed. Taking into account the aforementioned sys-

tematics, the fit result is then 159±43 (stat) ±14 (syst) CEνNS events. The expected

number of CEνNS events is 128± 17.

As in the case of the CsI analysis, the COHERENT collaboration formed two

groups to perform two CENNS-10 analyses (“A” and “B”) independently of one

another. The resulting CEνNS prediction, fit, and the values of uncertainties differ

significantly between the two groups, but they produce similar measurements of the

CEνNS cross section on argon. Only the Analysis A results were used in this work.

The B analysis prediction uncertainties are 1.0% from the value of the argon

quenching factor, 4.6% from calibrations with gamma sources, 1.6% from the de-

tector efficiency, 3.3% from the prompt light fraction, 2.0% due to the form-factor

uncertainty, and 10% from the neutrino-flux uncertainty. The total CEνNS rate

uncertainty is 12%.

The B analysis fit uncertainties are 3.1% from the energy dependence of F90,

6.3% from the neutrino arrival-time uncertainty, 5.2% from the BRN energy shape,

5.3% from the BRN arrival-time mean uncertainty, and 7.7% from the BRN arrival-

time width uncertainty. The total fit uncertainty is 13%. The fit result is 121 ±

36 (stat) ±16 (syst) CEνNS events, while the predicted value is 101 ± 12 CEνNS

events.

The CENNS-10 CEνNS measurement, like the CsI one, is within one σ of the SM

prediction. However, the measured values fluctuate in the opposite directions relative

to their corresponding predictions, as can be seen in Figure 4.14.
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Figure 4.14: CEνNS cross sections averaged over the SNS neutrino spectrum mea-
sured by COHERENT [A+20b].
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Chapter 5

Physics Analysis

In this chapter, the statistical analysis used in this work is described, focusing on

the definition of likelihood functions that the analysis is based on, followed by the

Feynman-Cousins procedure implemented in the NSI study. Then, the NSI results

are presented for the published COHERENT CsI and CENNS-10 data, as well as

a combination of the produced limits. Finally, results of a sensitivity study for the

future COHERENT Ge detector are presented.

5.1 Likelihood Approach

The likelihood function represents the probability of a certain set of theoretical pa-

rameters to produce the observed data. Usually it is convenient to consider the neg-

ative natural logarithm of that function instead, the negative log-likelihood (NLL).

The global minimum of NLL corresponds to the set of parameters most consistent

with the experimental data.

The most general NLL function used in this work combines Gaussian and Poisson

bins, as well as Gaussian systematic pulls:

NLL = min
{ξk}

[
N∑
n=1

(
Rexpt
n −Rtheor

n −
∑K

k=1 ξkc
k
n

un

)2
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2
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(5.1)
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where {ξk} are the K systematic pulls [FLM+02] (which follow Gaussian distributions

parameterized by (0, σk)), {Rexpt
n } and {Rtheor

n } are the measured and predicted data

bins, respectively, the first N of which are Gaussian values with the rest M follow-

ing Poisson distributions, {un} are the uncorrelated statistical uncertainties for the

Gaussian bins, {ckn} are correlations between bins, corresponding to the systematic

pulls.

All theoretical parameters ({θi}) consistent with the data to a certain confidence

level (CL) satisfy NLL({θi}) < NLLcrit, where NLLcrit depends on the number of

degrees of freedom of NLL and CL. NLLcrit is often assumed to be constant and,

for Gaussian NLL, its values are tabulated as χ2.

5.2 Feldman-Cousins Procedure

I followed the frequentist procedure described in G. J. Feldman and R. D. Cousins [FC98]

to obtain a limit on the εdVee and εdVee NSI couplings consistent with the COHERENT

CsI result [A+17c]. In this section I will describe the procedure in detail and how it

was used to constrain NSI.

First, I select a single set of the theoretical parameters being considered. These

are the εdVee and εuVee couplings while other NSI couplings are set to 0.

The next step is to generate a possible distribution of observed number of events

in the CsI detector. I assume that the observed values are distributed according to

a Poisson distribution with the mean being the sum of the predicted CEνNS event

rate and the total background.

After that, for each of the possible event-rate values (defined as the values lying

within five standard deviations of the mean), I calculate NLL of that value being

57



observed in the experiment with the chosen NSI couplings:

NLL = 2 ·
[
Nexp −

(
Ntheor(ε

dV
ee , ε

uV
ee ) +NCEνNS(εdVee , ε

uV
ee ) · α +Bon · β

)
+Nexp · log

Nexp

Ntheor(εdVee , ε
uV
ee ) +NCEνNS(εdVee , ε

uV
ee ) · α +Bon · β

]

+

(
α

σα

)2

+

(
β

σβ

)2

,

(5.2)

where Nexp is the total number of measured events, Ntheor(ε
dV
ee , ε

uV
ee ) is the total

number of predicted events, NCEνNS(εdVee , ε
uV
ee ) is the CEνNS prediction, Bon is the

beam-on background, α is the systematic parameter modifying the normalization of

NCEνNS(εdVee , ε
uV
ee ), σα is its standard deviation, β is the systematic parameter modify-

ing the normalization of Bon, and σβ is its standard deviation. The NLL is minimized

with respect to α and β.

In addition, the best possible NLL for the event-rate value is calculated by varying

the NSI couplings being constrained. The latter NLL is subtracted from the former

and the resulting quantity is weighted by the Poisson probability of the event rate

for which it was calculated.

Thus, I get the statistical NLL distribution, which is then integrated to obtain its

CDF. The NLL value for which that CDF crosses the confidence level (90% in this

work) is the one that is compared to the NLL calculated for the same NSI couplings

and the measurement. If the former exceeds the latter, this set of NSI couplings is

allowed by the data; otherwise it is excluded.

Finally, I repeat all of these steps for every point of the parameter space being

tested and obtain the allowed region at the selected confidence level.

For the CENNS-10 detector, I follow the same procedure, except the event rate

is assumed to follow a Gaussian distribution with the mean defined by the predicted
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number of CEνNS events and the sigma being the total uncertainty of the measure-

ment. This also necessitates using a different form for the NLL:

NLL =

(
Nexp −Ntheor(ε

dV
ee , ε

uV
ee )
)2

σ2
, (5.3)

where Nexp is the observed event rate, Ntheor(ε
dV
ee , ε

uV
ee ) is the prediction, and σ is the

total uncertainty.

The same steps are followed when combining the results of the two detectors

as well, with the corresponding event rates assumed independent for both measure-

ments for each set of NSI couplings and following the previously defined statistical

distributions. Therefore, the combined NLL is just a sum of the individual NLLs:

NLL = 2 ·
[
NCsI
exp −

(
NCsI
theor(ε

dV
ee , ε

uV
ee ) +NCEνNS(εdVee , ε

uV
ee ) · α +Bon · β

)
+NCsI

exp · log
NCsI
exp

NCsI
theor(ε

dV
ee , ε

uV
ee ) +NCEνNS(εdVee , ε

uV
ee ) · α +Bon · β

]

+

(
α

σα

)2

+

(
β

σβ

)2

+

(
NLAr
exp −NLAr

theor(ε
dV
ee , ε

uV
ee )
)2

σ2
,

(5.4)

where NCsI,LAr
exp are the observed event rates and NCsI,LAr

theor (εdVee , ε
uV
ee ) are the predicted

event rates for the CsI and LAr detectors, respectively, with the rest of the parameters

being defined under equations 5.2, 5.3.
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5.3 Results

5.3.1 NSI with Feldman-Cousins Procedure

CsI

The predicted SM rate for the 2017 CsI data, NSM , is 173. The two considered NSI

couplings, εdVee and εuVee , modify it in a way shown in Figure 2.14. The black solid lines

denote NSI values that result in the same rate as the SM prediction. This figure also

defines the NSI parameter space I will be working with in this section.

The next step is calculating NLL for each point of the parameter space:

NLL = min
α,β

{
2 ·
[
Nexp −

(
Ntheor(ε

dV
ee , ε

uV
ee ) +NCEνNS(εdVee , ε

uV
ee ) · α +Bon · β

)
+Nexp · log

Nexp

Ntheor(εdVee , ε
uV
ee ) +NCEνNS(εdVee , ε

uV
ee ) · α +Bon · β

]

+

(
α

σα

)2

+

(
β

σβ

)2
}
,

(5.5)

whereNexp is the total number of measured events, 547; Ntheor(ε
dV
ee , ε

uV
ee ) = NCEνNS(εdVee , ε

uV
ee )+

Bon+Bss is the total number of predicted events; Bon is the number of beam-on back-

ground events, 6; Bss is the total number of steady-state background events, 405; σα is

the RMS of the CEνNS normalization systematic uncertainty, 0.28; σβ is the RMS of

the Bon normalization systematic uncertainty, 0.25. The resulting values are plotted

in Figure 5.1.

Next, the FC procedure is followed to obtain NLLcrit at 90% CL, shown in Fig-

ure 5.2; and, finally, the NSI couplings allowed by the data at 90% CL (for which

NLL(εdVee , ε
uV
ee ) < NLLcrit(ε

dV
ee , ε

uV
ee )) are plotted in Figure 5.3. The resulting band of

allowed values is significantly narrower than the published NSI result, which repre-
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Figure 5.1: NLL dependence on the NSI couplings for the COHERENT CsI detec-
tor.

sents the power of the Feldman-Cousins technique.

CENNS-10

The same procedure is followed for the COHERENT CENNS-10 detector. Figure 5.4

shows the CEνNS rate modification for natural argon, with NSM assumed to be 128.

This plot is slightly different from Figure 2.14 because of different numbers of up and

down quarks in argon isotopes compared to cesium and iodine.

The likelihood form in this case is the following:

NLL =

(
NSM −NCEνNS(εdVee , ε

uV
ee )
)2

σ2
, (5.6)

where σ is the total measurement uncertainty, 46.2. Figure 5.5 shows the calculated

NLL values.

FC-calculated 90% NLLcrit values are plotted in Figure 5.6, which, due to sim-

plicity of equation 5.6 are easy to interpret and transition from around 2.7 (critical

χ2 value for one degree of freedom and 10% p-value) in the regions of the parameter
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Figure 5.2: 90%-CL NLLcrit dependence on the NSI couplings for the COHERENT
CsI detector.

Figure 5.3: The NSI couplings allowed by the COHERENT CsI measurement at
90% CL.
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Figure 5.4: Rate modification dependence on the NSI couplings for the COHERENT
CENNS-10 detector. Solid lines correspond to the values producing the SM rate.

Figure 5.5: NLL dependence on the NSI couplings for the COHERENT CENNS-10
detector.
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Figure 5.6: 90%-CL NLLcrit dependence on the NSI couplings for the COHERENT
CENNS-10 detector.

space where NSI enhance the rate to about 1.6 (critical χ2 value for one degree of

freedom and 20% p-value) where NSI maximally suppress it.

NLL(εdVee , ε
uV
ee ) < NLLcrit(ε

dV
ee , ε

uV
ee )) again represents the NSI parameter space

region allowed by the CENNS-10 measurement prediction at 90% CL. The area is

larger than the CsI one due to the total uncertainty being bigger in this case.

Combining CsI and CENNS-10

The log-likelihood in this case is just the sum of individual NLL in equations 5.5

and 5.3:

NLL = min
α,β

{
2 ·
[
NCsI
exp −

(
NCsI
theor(ε

dV
ee , ε

uV
ee ) +NCsI

CEνNS(εdVee , ε
uV
ee ) · α +Bon · β

)

+NCsI
exp · log

NCsI
exp

NCsI
theor(ε

dV
ee , ε

uV
ee ) +NCsI

CEνNS(εdVee , ε
uV
ee ) · α +Bon · β

]

+

(
α

σα

)2

+

(
β

σβ

)2
}

+

(
NLAr
SM −NLAr

CEνNS(εdVee , ε
uV
ee )
)2

σ2
,

(5.7)
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Figure 5.7: The NSI couplings allowed by the COHERENT CENNS-10 measure-
ment at 90% CL.

where the CsI and LAr superscripts denote rates of the COHERENT CsI and

CENNS-10 detectors, respectively.

Calculating two-bin 90%-CL NLLcrit using the FC method takes tens of hours

rather than minutes in the single-bin case, making this method difficult to scale to

add more detectors or bin data in energy or time. However, the FC result for NLL

defined in equation 5.7 is shown in Figure 5.9. The resulting allowed NSI couplings

are plotted in Figure 5.10.

Figure 5.11 shows the comparison between NSI couplings allowed by the individual

detectors and the combination, all at 90% CL. The combination provides a weaker

constraint than the individual limits due to the opposite fluctuations in the data

relative to the SM predictions for the corresponding measurements.

5.3.2 Neutrino Magnetic Moment

This study uses information from a proposal for a COHERENT Ge detector to esti-

mate its potential for measuring the neutrino magnetic moment.
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Figure 5.8: NLL dependence on the NSI couplings for the COHERENT CsI–
CENNS-10 combination.

Figure 5.9: 90%-CL NLLcrit dependence on the NSI couplings for the COHERENT
CsI-CENNS-10 combination.
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Figure 5.10: The NSI couplings allowed by the COHERENT combination of the
CsI and CENNS-10 measurements at 90% CL.

Figure 5.11: NSI couplings allowed by the COHERENT CsI and CENNS-10 mea-
surements at 90% CL (the values between the corresponding lines for the individual
limits and the hatched region for the combination).
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Figure 5.12: Calculated event rates for the COHERENT NaI, LAr, and Ge detectors
for 3 years of data taking. µν is the µνµ = µν̄µ = 6 ·10−10µB contribution to the event
rates, and SM is the SM CEνNS prediction.

Figure 5.12 shows the expected CEνNS spectra with and without the non-zero

neutrino magnetic moment, µνµ = µν̄µ = 6 · 10−10µB for several COHERENT de-

tectors. Despite other detectors having significantly more predicted events, the Ge

detector is designed to have the best energy resolution and lowest threshold, which

would give it a better opportunity for observing the neutrino magnetic moment, so a

more detailed magnetic-moment sensitivity study is presented in this section for that

detector.

A three-year predicted energy spectrum for the COHERENT Ge detector is shown

in Figure 5.13. The salmon-colored part of the spectrum is the predicted CEνNS

signal, while the cyan is the contribution from µνµ = µν̄µ = 6 · 10−10µB in the

first several bins. The steady-state background is taken from G. K. Giovanetti et

al. [G+15], and the beam-related-neutron background is estimated by COHERENT
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Figure 5.13: Predicted COHERENT Ge spectrum including the neutrino-magnet-
ic-moment contribution.

from the CsI background measurement.

Because of that spectral dependence of the electromagnetic scattering, using the

full spectrum should provide a significantly better measurement of the neutrino mag-

netic moment than a single-bin analysis. Therefore, the log-likelihood form used

is

NLL = min
φ,β,ρ,κ

K∑
k=1

{
N exp
k −

[
N theor
k (µν , ρ) +NCEνNS

k (µν , ρ) · (φ+ κ) +Bon
k · (φ+ β)

]
+N exp

k · log
N exp
k

N theor
k (µν , ρ) +NCEνNS

k (µν , ρ) · (φ+ κ) +Bon
k · (φ+ β)

+

(
φ

σφ

)2

+

(
β

σβ

)2

+

(
ρ

σρ

)2

+

(
κ

σκ

)2
}
,

(5.8)

where K is the number of energy bins; N exp
k = NCEνNS(µν,0, 0)+Bon

k +Bss
k is the k-th

measurement bin, assuming µν,0 to be the true value of the muon-neutrino magnetic

moment; Bss
k is the k-th steady-state-background bin; Bon

k is the k-th beam-on-
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Figure 5.14: NLL dependence on neutrino-magnetic-moment values for the pre-
dicted COHERENT Ge spectrum assuming a non-zero neutrino magnetic moment.

background bin; N theor
k (µν , ρ) = NCEνNS(µν , ρ) +Bon

k +Bss
k is the prediction for the

total rate in the k-th bin; σφ is the RMS of the flux systematic uncertainty, assumed

to be 0.1; σβ is the RMS of the beam-on-background normalization systematic un-

certainty, taken to be 0.25; σρ is the RMS of the form-factor systematic uncertainty

obtained by varying the nuclear radius, it is assumed to be 0.03; σκ is the RMS of the

energy-independent quenching-factor systematic uncertainty, which is assumed to be

0.039.

Varying the neutrino-magnetic-moment value, I get the solid curve shown in Fig-

ure 5.14 for NLL and taking the histogram from Figure 5.13 as the measured energy

spectrum. 0 is within 1 σ of the NLL minimum, making a robust measurement of a

neutrino magnetic moment on the order of 10−10–10−9µB impossible with the current

assumptions.

Inverting the procedure and using 0 as the true value of the neutrino magnetic

moment, the solid curve in Figure 5.15 is obtained. The value of the neutrino mag-

netic moment where that curve intersects with a constant NLLcrit value of 2.71 (the
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Figure 5.15: NLL dependence on neutrino-magnetic-moment values for the pre-
dicted COHERENT Ge spectrum assuming no neutrino magnetic moment.

χ2 value for one degree of freedom and a p-value of 0.1) is the predicted 90%-CL

constraint for the neutrino magnetic moment obtained from a possible COHERENT

Ge measurement with the aforementioned assumptions. The resulting value is about

8 · 10−10µB.
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Chapter 6

Conclusions

6.1 NSI

Applying the FC technique to the problem of constraining a pair of NSI couplings

while other NSI couplings are set to 0 produces a significantly better result even with

the same data and assumptions: the calculated band of allowed values is 1.4 times

narrower than the published COHERENT CsI result [A+17c].

However, as the limit becomes stronger, the allowed values get closer to the order

of other couplings, which invalidates the justification for assuming them to be 0 in

the analysis. At that point, more NSI couplings have to be added, increasing the di-

mensionality of the problem. Because of that, just as for other possible improvements

discussed later, the FC method quickly becomes too computationally expensive to

use.

Performing the same procedure with the recently published COHERENT CENNS-

10 CEνNS data [A+20b] results in two bands of allowed NSI values that are together

1.1 times narrower than the 2017 COHERENT NSI result [A+17c]. However, because

of the qualitatively different double-band structure, the new limit allows some of the

values that were excluded by previous constraint.

Using the FC procedure to combine the two measurements produces two allowed

bands that are together 1.2 times narrower than the original constraint [A+17c] and

look like the average of the two individual limits. This effect is likely caused by

the opposite fluctuations relative to the SM predictions in the individual CEνNS

measurements (see Figure 4.14). Obtaining the combined limit is also about 200 times

slower than the individual constraints, which may make improving the constraint by

72



adding more data prohibitively slow by this method.

The FC method implemented here performs a raster scan of the parameter space.

The resulting plots show that this is not efficient, since a significant amount of pro-

cessing power is used on calculating likelihood distributions for points in the param-

eter space that result in very similar critical values. A possibility for considerable

optimization exists in varying the density of tested points in the parameter space,

calculating critical values more often where the output quickly changes and interpo-

lating more where it does not.

Another way forward is to split a single measurement into bins in time and energy.

In addition to constraining light-mediator NSI, this will also result in a degree of sep-

aration for different neutrino flavors in πDAR experiments, affecting heavy-mediator

NSI limits as well.

More careful treatment of systematic uncertainties can also improve the result.

Several of the contributing systematics are correlated between different detectors in

COHERENT, such as the uncertainty on the neutrino flux, nuclear radius, or beam-

related backgrounds. The effects of correlation are expected to be small, but could

be more important as precision improves.

6.2 Neutrino Magnetic Moment

CEνNS experiments provide a good opportunity to directly constrain neutrino mag-

netic moments. Unfortunately, this requires a capability of observing nuclear recoils

at the low-energy end of CEνNS, and even CEνNS has not yet been observed by most

detectors constructed to measure the interaction due to the difficulty of the task.

However, the field of CEνNS detector development has been rapidly progressing,

now boosted by the first measurement, so the possibility for competitive neutrino-

magnetic-moment limits with CEνNS exists for future-generation detectors.
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As for CEνNS detectors being deployed within about a year, the COHERENT

Ge detector is one of the more promising projects for neutrino-magnetic-moment

searches with CEνNS, and its expected 90%-CL limit calculated in this work is µνµ <

8 ·10−10µB, which is weaker than the best current constraint, µνµ < 5.8 ·10−11µB from

the Borexino measurement, but would represent a limit based on a different process.

On the other hand, performing a similar study for other COHERENT detectors

is useful for estimating their capability for this measurement, and possibly designing

a detector much better suited for it.
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