

The COHERENT Experiment

Kumpan A.V.

On behalf of COHERENT Collaboration

National Research Nuclear University MEPhI

ICPPA, October, 2016

Coherent elastic neutrino-nulcei scattering

CEvNS is a fundamental process predicted by D.Z. Freedman in 1974:

$$\nu + A \rightarrow \nu' + A'$$

Total cross section of the process can be described by the fomula:

$$\sigma_{tot} = \frac{G_F^2 E_v^2}{4\pi} [Z(1 - \sin^2 \theta_W) - N]^2 F^2(Q^2)$$

A. Drukier & L. Stodolsky, PRD30, 2295 (1984):

$$F^2(Q^2)$$
 ground state elastic form factor $artheta_W$ Weinberg angle

 $\sigma = \frac{G_F^2 N^2}{4 \pi} E_v^2$

More neutrons — larger cross section.

Physics motivation

Coherent neutrino nuclei scattering plays a very important role in physics. It could help to improve our understanding of:

- Dark Matter
- Supernova Physics
- Weak Mixing Angle
- Sterile Neutrinos
- Practical applications

Spallation Neutron Source (SNS), Oak Ridge National Laboratory (ORNL), USA

Proton beam energy — 0.9-1.3 GeV Intensity — 9.6*10¹⁵ protons/sec Pulse duration — 700 ns Repetition rate — 60 Hz Liquid Mercury target

1.9*10²² year⁻¹ neutrinos each of three flavors ($v_{e'}$, $v_{\mu'}$, v_{τ})

COHERENT collaboration

UF UNIVERSITY of FLORIDA

UNIVERSITY of WASHINGTON

Subdetector Technologies

Target	Technology	Mass, kg	Distance from source, m	Recoil threshold, keV	Data-taking start date		
Csl[Na]	Scintillaton srystal	14	20	6.5	9/15, 3σ in 2 years	-	
Ge	HPGe PPC	10	22	5	Fall 2016		
Ar	Single- phase	35	29	20	Fall 2016	Ge	Cs
Nal	Scintillation srystal	185*/ 2000	22	13	July 2016		

Subdetector technologies Csl[Na]

- Mass 14 kg grown with low level of impurities
- Large CevNNS cross-section of Cs and I provides ~800 recoils per kg per year
- Statistical nuclear/electron recoil discrimination at a level of 1000 accumulated events

Low background Csl[Na]

- High light yield ~ 45 photons/keVee
- Well measured quenching factor

J. Collar, (2013), 1302.0796

Subdetector technologies Nal[TI]

 Phase I: 185 detector kg is already deployed but it is not high gain mode sensitive to CevNS yet

 Phase II: 2 ton detector wait for deployment in Fall 2016

Additional goal is to measure neutrino interactions on ¹²⁷I

J. A. Formaggio and S. Zeller, Rev. Mod. Phys. 84, 1307 (2012)

Subdetector technologies High Purity Germanium (HPGe)

- Technology developed for MAJORANA DEMONSRATOR
- 20 m distance from the target
- Resolution at low energy and threshold below 1 keV
- Phase I: 5-10 kg of existing Ge detectors with lead, copper and polyethylene shielding system
- Potential phase II: Add additional detector mass with larger detectors

Neutrino Cubes

$$v_e + {}^{208}Pb \rightarrow {}^{208}Bi^* + e^-$$
 CC process
 $v_r + {}^{208}Pb \rightarrow {}^{208}Pb^* + v_r$ NC process

Pb of shielding interacts with neutrino and interaction result can be source of additional neutrons.

Neutrino Cubes are the detectors used for observing of additional neutron production inside shielding

Subdetector technologies LAr. CENNS-10 detector.

CENNS-10 is one phase liquid argon detector created in FermiLab.

CENNS-10:

- filled with 35 kg of liquid Argon (N = 40)
- ~ 28 meters from the target
- Has 2 low background PMT R5912-02MOD for cryogenics
- TPB (tetraphenyl butadiene) covered acrylic plates and cylinder inside surface for wavelength shifting
- Placed in lead and copper shielding and water tank
 Is under deployment at SNS Basement now

Subdetector technologies: LAr. Inner structure.

CHANNEL NUMBER (ch)

PMT R5912

PMT mounting rings

Top acrylic disk. There is the same disk on the bottom.

Teflon covered inner frame

Acrylic Cylinder

CENNS-10 inner frame

Acrylic cylinder and disks covered with TPB

Expected signals and

18

10

11

detector backgrounds

Summary

COHERENT:

- Proposed to use a few detector technologies to register CevNS
- Deployed first order of detectors in SNS Basement
- Uses additional detectors to measure Neutrino Induced Neutron background
- Main goal for first order of detectors is testing of N² dependence