# at the Spallation Neutron Source ((C & HEREN) **COHERENT**





Yu.Efremenko – University of Tennessee

# Coherent Elastic Neutrino Nuclear Scattering (CEvNS)

$$\frac{d\sigma}{dT_A} = \frac{G_F^2}{4\pi} m_A \Big[ Z \Big( 1 - 4\sin^2\theta_W \Big) - N \Big]^2 \Big[ 1 - m_A \frac{T_A}{2E_v^2} \Big] F^2(Q^2)$$

$$\sigma_{tot} = \frac{G_F^2 E_v^2}{4\pi} \Big[ Z \Big( 1 - 4\sin^2\theta_W \Big) - N \Big]^2 F^2(Q^2)$$

$$m_A - nucleus mass$$

$$T_A - kinetic \ energy \ of \ recoil \ nucleus$$

$$E_v - neutrino \ energy$$

$$Z - nucleus \ charge$$

$$N - number \ of \ neutrons \ in \ the \ nucleus$$

$$F \ is \ nucleus \ form \ factor$$

 $E_v < 50 MeV$ 

D.Z. Freedman PRD 9 (1974) A. Drukier & L. Stodolsky, PRD 30, 2295 (1984) Horowitz et al. astro-ph/0302071

 $\mathbf{Z}^0$ 

# Why we do not see it yet?



#### **CEvNS from natural neutrinos creates ultimate background for direct DM search experiments**



Understand nature of background (& detector response)

#### **CEvNS** is cleanly predicted in the SM, so any deviation could represent new physics

Example: sensitivity to Non-Standard Interactions (NSI) of neutrinos and quarks; could get ~factor of 10 beyond existing limits with current-generation CEvNS experiment



#### CEvNS is important in supernova models and supernova neutrino detection



J.R. Wilson, PRL 32, 849 (1974) C. Horowitz et al., PRD 68, 02005 (2003)

#### Clean SM prediction for the rate $\rightarrow$ measure sin<sup>2</sup> $\theta_{w}$ eff ;



#### **Neutrino magnetic moment**

#### Signature is distortion at low recoil energy E



→requires low energy threshold

See also new paper: Kosmas et al., arXiv:1505.03202

# Also note: tone-scale underground detectors can do astrophysics



Billard et al., arXiv:1409.0050

#### Solar neutrinos:

rule out sterile oscillations using CEvNS (NC)

Horowitz et al., PRD68 (2003) 023005

#### Supernova neutrinos:

handful of events per tonne
@ 10 kpc: sensitive to
all flavor components of the flux

#### A practical application in nuclear safeguards:

P. Huber, talk at NA/NT workshop, Manchester, May 2015

Presence of **plutonium breeder blanket** in a reactor has v spectral signature

$$^{238}\text{U} + n \rightarrow ^{239}\text{U} \xrightarrow{\beta} ^{239}\text{Np} \xrightarrow{\beta} ^{239}\text{Pu}$$



v spectrum is below IBD threshold

→ accessible with CEvNS, but require low recoil energy threshold

# What Source We Can Use to Look for Neutrino Coherent Scattering

#### **Radioactive sources**

<sup>144</sup>Ce, 75 kCi



#### **Nuclear Reactors**



#### **Stopped Pion Faciliti**



1 kW Practical distance between source and detector is ~2 m E<sub>v</sub> ~ 1.5 MeV

> 3 GW Distance ~20 m E<sub>v</sub> ~ 3 MeV

> 1 MW Distance ~15 m E<sub>v</sub> ~ 30 MeV

# **Reactor Neutrinos**



Ar

Proton beam energy – 0.9 - 1.3 GeV Intensity - 9.6 · 10<sup>15</sup> protons/sec Pulse duration - 380ns(FWHM) Repetition rate - 60Hz Total power – 0.9 – 1.4 MW Liquid Mercury target

**SNS-03** 

# **SNS-Spallation Neutrino Source**



## **Neutrino Production at SNS**



Number of protons on target for 1.1 mA at 1.3 GeV is 0.687.10<sup>16</sup> sec<sup>-1</sup>

Number of each flavor neutrino produced by one proton is 0.13

SNS is operational 2/3 part of the year

Number of each flavor of neutrinos produced at SNS is 1.9.10<sup>22</sup> year<sup>-1</sup>

Caveat:

There is larger flux of antineutrinos from decay of radioactivity in the target However, their energy is at a few MeV and almost continues in time.

# **Stopped-Pion (πDAR) Neutrinos**



#### The SNS has large, extremely clean DAR v flux



#### Comparison of pion decay-at-rest $\nu$ sources

from duty cycle



## **The COHERENT collaboration**

arXiv:1509.08702

| Institution                                                | Board Member    |  |
|------------------------------------------------------------|-----------------|--|
| University of California, Berkeley                         | Kai Vetter      |  |
| University of Chicago                                      | Juan Collar     |  |
| Duke University                                            | Kate Scholberg  |  |
| University of Florida                                      | Heather Ray     |  |
| Indiana University                                         | Rex Tayloe      |  |
| Institute for Theoretical and Experimental Physics, Moscow | Dmitri Akimov   |  |
| Lawrence Berkeley National Laboratory                      | Ren Cooper      |  |
| Los Alamos National Laboratory                             | Steve Elliott   |  |
| National Research Nuclear University MEPhI                 | Alex Bolozdynya |  |
| New Mexico State University                                | Robert Cooper   |  |
| North Carolina Central University                          | Diane Markoff   |  |
| North Carolina State University                            | Matt Green      |  |
| Oak Ridge National Laboratory                              | Jason Newby     |  |
| Sandia National Laboratories                               | David Reyna     |  |
| University of Tennessee, Knoxville                         | Yuri Efremenko  |  |
| Triangle Universities Nuclear Laboratory                   | Phil Barbeau    |  |
| University of Washington                                   | Jason Detwiler  |  |

- Collaboration: ~65 members,
   16 institutions (USA+ Russia)
- Spokesperson: K. Scholberg
   ORNL PI: J. Newby

• Technical coordinator/PM: D. Reyna







# Potential Locations for Neutrino Experiment at the SNS



#### sites inside target building

Multiple sites are available at a distance 15-20 m.

"Green field" **İS** outside of the target building distance is more than 30 m

## **Background Measurements at SNS**





# Started in Sept 2013

## "Out-ofbeam" events, primarily



Channel Gamma PSD nr:0

"In-Beam" events, considerabl y more neutron



Channel PSD nr:0





## **COHERENT detectors and Status**

| Nuclear<br>Target | Technology               | Mass<br>(kg) | Distance<br>from source<br>(m) | Recoil<br>threshold<br>(keVr) | Data-taking start<br>date; CEvNS detection<br>goal |    |
|-------------------|--------------------------|--------------|--------------------------------|-------------------------------|----------------------------------------------------|----|
| Csl[Na]           | Scintillating<br>Crystal | 14           | 20                             | 6.5                           | 9/2015; 3σ in 2 yr                                 |    |
| Ge                | HPGe PPC                 | 10           | 22                             | 5                             | Fall 2016                                          | Ge |
| LAr               | Single-phase             | 35           | 29                             | 4                             | Fall 2016                                          |    |
| Nal               | Scintillating<br>crystal | 85*          | 29                             | TBD                           | *high-threshold<br>deployment done last<br>week    |    |

Measurements indicate SNS basement is neutron-quiet

- Csl installed July 2015
- Three more detectors to be deployed summer/fall 2016

#### **Expected signals**



# Other potential neutrino physics at the SNS

**Neutrino oscillations – Test of the LSND claim** 

**Search for Sterile Neutrinos** 

**Neutrino Magnetic moment** 

**Measurement of Neutrino Spectra from Muon Decay** 

**Cross section Measurements** 



## Core-collapse supernovae

- Destruction of massive star initiated by the Fe core collapse
  - 10<sup>53</sup> ergs of energy released
  - 99% carried by neutrinos
  - A few happen every century in our Galaxy, but the last one observed was over 300 years ago
- Dominant contributor to Galactic nucleosynthesis
- Neutrinos and the weak interaction play a crucial role in the mechanism, which is not not well understood





## **Neutrino Induced Neutrons (NIN)**

Never been measured. There are only theoretical

# This reaction on Lead is used by HALO experiment in the SNOIab,



Fitting the annual modulation in DAMA with neutrons from muons and neutrinos

Jonathan H. Davis<sup>1</sup>

<sup>1</sup>Institute for Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, United Kingdom j.h.davis@durham.ac.uk

author explain DAMA seasonal modulations by solar neutrino induced interactions in the DAMA shielding



Comment on "Fitting the annual modulation in DAMA with neutrons from muons and neutrinos"

> P.S. Barbeau<sup>a</sup>, J.I. Collar<sup>b</sup>, Yu. Efremenko<sup>c</sup>, and K. Scholberg<sup>a,\*</sup>. <sup>a</sup>Department of Physics, Duke University, Durham, NC 27708 USA <sup>b</sup>Department of Physics, University of Chicago, Chicago, IL 60637 USA <sup>c</sup>University of Tennessee, Knoxville, TN 37996 USA <sup>\*</sup>Corresponding author. E-mail: schol@phy.duke.edu

In this article authors believe that J.Davis is wrong by >6 orders of magnitude.

#### **NIN measurement in SNS basement**

- Scintillator inside CsI detector lead shield (now)
- Liquid scintillator surrounded by lead (swappable for other NIN targets) inside water shield



# Measurement of Neutrino Induced Neutrons It is First Neutrino Experiment at the SNS



Liquid Scintillator detectors inside Lead, Poly, Cd, Water shield with muon veto

(Expected 3 events per day)

On the next day after we finished installation, SNS got water leak in the accelerator, then target failed.

It has been fixed

No we are running for one full year.

Have a statistics. Data are being analyzed



# It is time to measure COHERENT neutrino scattering !!!

**Appropriate technology and sources are available** 

# SNS is the best place for the first observation of CEvNS

**Reach neutrino program at SNS is being developed**