Detectors for the COHERENT neutrino experiment

R. Tayloe Indiana U. for the COHERENT collaboration

Outline

- Physics motivation
- Experimental overview
- detectors:
 - Csl
 - Nal
 - LAr
 - Ge

Coherent Elastic v-Nucleus Scattering:

"CEvNS": Coherent Elastic v-Nucleus Scattering: $vA \rightarrow vA$

Neutrino scatters with low momentum transfer coherently, elastically from entire nucleus. For large nucleus,

R_N~few fm, and:

$$E_{\nu} \lesssim \frac{hc}{R_N} \cong 50 \text{ MeV}$$

.. but recoil energy is quite small:

$$E_r^{\rm max} \simeq \frac{2E_{\nu}^2}{M} \simeq 50 \ {\rm keV}$$

The CEvNS process has yet to be observed...

Coherent Elastic v-Nucleus Scattering:

Cross section is large...
in fact largest v channel
at O(10 MeV) on heavier nuclei,
eg Ar

and has distinctive
N² dependence

$$\frac{d\sigma}{dE} = \frac{G_F^2}{4\pi} \left[(1 - 4\sin^2\theta_w) Z - (A - Z) \right]^2 M \left(1 - \frac{ME}{2E_\nu^2} \right) F(Q^2)^2$$

R. Tayloe, APS-DNP 2016

Coherent Elastic v-Nucleus Scattering:

Physics of CEvNS:

- Supernovae: Expected to be important in core-collapse SN and possible SN detection channel.
- Standard Model tests: $\sin^2 \theta_w$
- Nuclear Physics: nuclear form factors
- v oscillations: A possible v_s detection channel
- Dark Matter: Important background for 10-ton searches

In next session on neutrinos:

- J. Newby for more CEvNS physics
- M. Heath on CEvNS backgrounds
- T. Thornton on sub-GeV dark matter

COHERENT experiment at SNS/ORNL

ORNL SNS is also an...

..v source

- intense (~1MWatt, 0-50 MeV)..
- pulsed (60 Hz, 600ns spill time)...

R. Tayloe, APS-DNP 2016

ψ

COHERENT experiment at SNS/ORNL

- a low-background experimental area has been acquired for COHERENT
- 20-29 m from target

ψ

COHERENT experimental strategy at SNS/ORNL

Measure N² dependence of CEvNS process

with multiple targets/detector technologies

- (event rate)/kg is high, so relatively small (10-100 kg) detectors sufficient
- radiological background requirements fairly modest, because of pulsed beam
- but, need low E thresholds !

COHERENT detectors

Nuclear Target	Technology	Mass (kg)	source distance (m)	Recoil thresh (keVnr)	Data-taking start date; CEvNS detection goal
CsI[Na]	Scint. Crystal	14	20	6.5	9/2015; 3σ in 2 yr
Ge	HPGe PPC	10	22	5	Fall 2016
Nal[Tl]	Scintillating crystal	185* /2000	28	13	*high-thresh. runs starting July 2016
LAr	Single-phase scintillation	35	29	20	Fall 2016

Csl[Na] for COHERENT

- 14kg CsI[Na] crystal (Na doping reduces afterglow seen in common TI doping)
- .. installed July 2015 in the v corridor at SNS
- ... into Pb, H2O, plastic shielding structure
- ~ 1 calendar year data has been collected

Csl[Na]

- Quenching factor measurements indicate CEvNS signal within reach
- Steady state backgrounds at the SNS installation are 10-20% of measurements at U. of Chicago.

• Expected neutrino-induced-neutron backgrounds reduced to 4% (of CEvNS) with HDPE inner shield

Stay tuned for results!

Nal [TI] for COHERENT

 discontinued DHS program has provided opportunity to use many ~7kg Nal xtals

- 185 kg prototype for initial deployment
- 2 ton next phase deployment
- Up to 9 tons available
- Also CC interaction with ν_{e}

U

LAr for COHERENT

- Single-phase scintillation detector built by J. Yoo, etal at Fermilab for CEvNS effort
- 35-kg fiducial volume
- Readout: 2 × Hamamatsu R5912-02MOD PMT (8" cryogenic, highgain)
- Excellent nuclear-/electron-recoil PSD demonstrated by miniCLEAN
- SCENE has measured quenching factors¹
- ³⁹Ar controllable with PSD and duty factor
- Pb, Cu, H2O shielding structure
- Currently being installed at SNS

¹H. Cao et al., SCENE Collaboration, *Phys. Rev.* D91 (2015) 092007. arXiv:1406.4825 [physics.ins-det].

LAr for COHERENT

- Tested summer '16 at IndianaU
- Installation at SNS underway!

Ge for COHERENT

- HPGe PPC
- Excellent resolution at low energies
- Well-measured quenching factor
- Phase I: 5-10kg PPC Ge detector array:
 - Repurposing on-hand Majorana Demonstrator/LANL ^{nat}Ge detectors.
 - Copper/Lead/Poly shield with Plastic scintillator µ-veto.
 - Installation in Fall 2016
- Potential Phase II: Expansion of target with larger-mass (C4-style) point contact detectors.

Summary

- The COHERENT collaboration is employing 4 different detector technologies for an unambiguous measurement of CEvNS at the SNS in the next years.
- See talks on COHERENT in next session (00PF).
- Thanks for DOE, NSF, ORNL support!

SNS v corridor

arXiv:1509.08702

The COHERENT Experiment at the Spallation Neutron Source

D. Akimov,^{1,2} P. An,³ C. Awe,^{4,3} P.S. Barbeau,^{4,3} P. Barton,⁵ B. Becker,⁶ V. Belov,^{1,2} A. Bolozdynya,² A. Burenkov,^{1,2} B. Cabrera-Palmer,⁷ J.I. Collar,⁸ R.J. Cooper,⁵ R.L. Cooper,⁹ C. Cuesta,¹⁰ D. Dean,¹¹ J. Detwiler,¹⁰ A.G. Dolgolenko,¹ Y. Efremenko,^{2,6} S.R. Elliott,¹² A. Etenko,^{13, 2} N. Fields,⁸ W. Fox,¹⁴ A. Galindo-Uribarri,^{11, 6} M. Green,¹⁵ M. Heath,¹⁴ S. Hedges,^{4, 3} D. Hornback,¹¹ E.B. Iverson,¹¹ L. Kaufman,¹⁴ S.R. Klein,⁵ A. Khromov,² A. Konovalov,^{1,2} A. Kovalenko,^{1,2} A. Kumpan,² C. Leadbetter,³ L. Li,^{4,3} W. Lu,¹¹ Y. Melikyan,² D. Markoff,^{16,3} K. Miller,^{4,3} M. Middlebrook,¹¹ P. Mueller,¹¹ P. Naumov,² J. Newby,¹¹ D. Parno,¹⁰ S. Penttila,¹¹ G. Perumpilly,⁸ D. Radford,¹¹ H. Ray,¹⁷ J. Raybern,^{4,3} D. Reyna,⁷ G.C. Rich^{*},³ D. Rimal,¹⁷ D. Rudik,^{1,2} K. Scholberg[†],^{4,[†]} B. Scholz,⁸ W.M. Snow,¹⁴ V. Sosnovtsev,² A. Shakirov,² S. Suchyta,¹⁸ B. Suh,^{4,3} R. Tayloe,¹⁴ R.T. Thornton,¹⁴ I. Tolstukhin,² K. Vetter,^{18,5} and C.H. Yu¹¹ ¹SSC RF Institute for Theoretical and Experimental Physics of National Research Centre "Kurchatov Institute", Moscow, 117218, Russian Federation ²National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409, Russian Federation ³Triangle Universities Nuclear Laboratory, Durham, North Carolina, 27708, USA ⁴Department of Physics, Duke University, Durham, NC 27708, USA ⁵Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ⁶Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA ⁷Sandia National Laboratories, Livermore, CA 94550, USA ⁸Enrico Fermi Institute, Kavli Institute for Cosmological Physics and Department of Physics, University of Chicago, Chicago, IL 60637, USA ⁹Department of Physics, New Mexico State University, Las Cruces, NM 88003, USA ¹⁰Department of Physics, University of Washington, Seattle, WA 98195, USA ¹¹Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ¹²Los Alamos National Laboratory, Los Alamos, NM, USA, 87545, USA ¹³National Research Centre "Kurchatov Institute", Moscow, 117218, Russian Federation ¹⁴Department of Physics, Indiana University, Bloomington, IN, 47405, USA ¹⁵Physics Department, North Carolina State University, Raleigh, NC 27695, USA ¹⁶Physics Department, North Carolina Central University, Durham, North Carolina 27707, USA ¹⁷Department of Physics, University of Florida, Gainesville, FL 32611, USA ¹⁸Department of Nuclear Engineering, University of California, Berkeley, CA, 94720, USA

10/16/2016