COHERENT AT THE SPALLATION NEUTRON SOURCE

Björn J. Scholz On behalf of the COHERENT collaboration

April 17, 2016

THE COHERENT COLLABORATION

- We are an international collaboration including 17 institutions from the US and Russia
- Our goal is to observe CEuNS at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory, Tennessee
- Rich past experience from multiple different areas, including rare event searches such as dark matter, $CE\nu NS$, $0\nu\beta\beta$ -decay, . . .

Adapted from S. J. Brice et al, PRD89 (2014), 072004

• Predicted standard model cross section is large

$$\sigma \propto \frac{G^2}{4\pi} E^2 \left[N - \left(1 - 4\sin^2\theta_W \right) Z \right]^2$$

A.Drukier & L.Stodolsky, PRD30 (1984),2295

- Coherent interaction requires $Q \lesssim R_A^{-1} \approx 50 \text{ MeV}$
- Maximum recoil energy is small

$$E_{\rm NR,max} = \frac{2E^2}{M}$$

THE SNS - A STOPPED π NEUTRINO SOURCE

K. Scholberg, PRD73 (2006), 033005

- $\sim 10^{15}$ protons/s on Hg target
- Pulse duration \sim 380 ns (FWHM)
- Repetition rate 60 Hz
- Total power $\sim 1 \, \text{MW}$

- Neutrino emission spectrum:
 - Well understood
 - Matching energy range
 - Multiple flavors
 - ν_x flux $\sim 2 \times 10^7 \text{cm}^{-2} \text{s}^{-1}$

- Multi-target approach favorable to test N^2 dependance
- Various target materials suitable for $\text{CE}\nu\text{NS}$ detection, such as NaI, CsI, LXe, LAr, Ge, etc.

 \rightarrow Three of these are planned for deployment in phase I:

Ge

LXe

DETECTOR LOCATIONS W.R.T. THE TARGET

csi[na] - installation in june 2015

CSI[NA] - DETECTOR CALIBRATION

- Light yield calibration using a $^{\rm 241}{\rm Am}\;\gamma-{\rm source}$
- Low energy γ-s interact close to source location making it possible to probe uniformity of Csl[Na] crystal
- Overall variation below 3 %

CSI[NA] - DETECTOR CALIBRATION

- Built a library of low energy events in CsI[Na] crystal to train future cuts on
 - → Shallow angle Compton scatter events using a pencil beam of ¹³³Ba γ-s

CSI[NA] - NEW QUENCHING FACTOR MEASUREMENTS

- Some scatter in previous quenching factor measurements
 - → Two new, independent q.f. measurements by our Chicago (*included above*) and Duke (*not shown above, being analyzed*) groups at TUNL
- Duke measurements probe both the $\text{CE}\nu\text{NS}$ region of interest as well as higher recoil energies

COHERENT AT THE SNS - SUMMARY

- We are an international collaboration including 17 institutions from the US and Russia determined to observe $\text{CE}\nu\text{NS}$
- The SNS perfectly matches our needs to accomplish our goal
- Three detector sub-systems planned for deployment within phase I. One of which (CsI[Na]) has already been deployed (June 2015)
- Multiple calibration measurements (past and future) to ensure proper understanding of detector response

BACKUP

QUENCHING FACTOR MEASUREMENT - DETAILS

THE SNS - DETECTOR LOCATIONS - NEUTRON BACKGROUNDS

DETECTOR TECHNOLOGIES - 2-PHASE XENON (RED 100)

Hamamatsu R11410-20

DETECTOR TECHNOLOGIES - 2-PHASE XENON (RED 100)

BONUS: NEUTRINO INDUCED NEUTRONS

 $\nu_e + {}^{208}\text{Pb} \rightarrow {}^{208}\text{Bi}^* + e^ \nu_{\rm x}$ +²⁰⁸Pb \rightarrow ²⁰⁸Pb^{*} + $\nu_{\rm x}$

COMPARISON OF STOPPED π FACILITIES

Facility	Location	Proton Energy (GeV)	Power (MW)	Bunch Structure	Rate	Target
LANSCE	USA (LANL)	0.8	0.056	600 µs	120 Hz	Various
ISIS	UK (RAL)	0.8	0.16	2 × 200 ns	50 Hz	Water-cooled
						tantalum
BNB	USA (FNAL)	8	0.032	1.6 µs	5-11 Hz	Beryllium
SNS	USA (ORNL)	1.3	1	700 ns	60 Hz	Mercury
MLF	J apan (J -PA RC)	3	1	2 × 60-100 ns	25 Hz	M ercury
ESS	Sweden (planned)	1.3	5	2 ms	17 Hz	M ercury
DAE&ALUS	T B D (planned)	0.7	~ 7 × 1	100 ms	2 Hz	Mercury