Prospects for measuring coherent elastic neutrino-nucleus scattering

Kate Scholberg, Duke University

ORNL Seminar, November 14 2013

Outline

- Neutrinos
- Coherent elastic neutrino-nucleus scattering
- Possible sources and detectors; focus on stopped-pion neutrinos
- Some physics that could be explored
- Prospects for near-future measurements (SNS & FNAL BNB)

- Zero charge
- 3 flavors (families)
- Interact only via weak interaction (& gravity)
- Tiny mass (< 1 eV)

Why do neutrinos matter?

astrophysical systems

cosmology

particles and

interactions

nuclear physics

Neutrinos make up a ~few % of dark matter, but are important in understanding of history of structure formation

Sources of 'tame' neutrinos

Proton accelerators

Usually (but not always) better understood...

Neutrino Interactions with Matter

Neutrinos are aloof but not *completely* unsociable

$$v_{|} + N \rightarrow |^{\pm} + N'$$

Produces lepton with flavor corresponding to neutrino flavor

(must have enough energy to make lepton)

Flavor-blind

Coherent Elastic (neutral-current) Neutrino-Nucleus Scattering (CENNS)

 $v + A \rightarrow v + A$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils; coherent for Q<~1/R up to E_v ~ 50 MeV for mid-size A

Well-calculable cross-section in SN:

A. Drukier & L. Stodolsky, PRD 30:2295 (1984) Horowitz et al. , PRD 68:023005 (2003) astro-ph/0302071

 $\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{\Lambda} F^2(Q^2)$

Why try to measure this?

- It's never been done!

Important in supernova processes
 Important for supernova v detection

- Deviations from expected x-scn may indicate non-SM processes

???

- Possibly even applications..

e.g. Barbeau et al., IEEE Trans. Nucl. Sci. 50: 1285 (2003) C. Hagmann & A. Bernstein, IEEE Trans. Nucl. Sci 51:2151 (2004)

CENNS from natural neutrinos creates ultimate background for direct DM search experiments

J. Billard, E. Figueroa-Feliciano, and L. Strigari, arXiv:1307.5458v2 (2013).

The cross-section is large

But CENNS has never been observed...

Why not?

Nuclear recoil energy spectrum for 30 MeV ν

Most neutrino detectors (water, gas, scintillator) have thresholds of at least ~MeV: so these interactions are hard to see

What do you want in order to detect CENNS?

High-energy neutrinos, because both cross-section and maximum recoil energy increase with neutrino energy

... neutrino energy should not be too high ...

The coherent cross-section flattens, but inelastic cross-section increases (eventually start to scatter off *nucleons*) \rightarrow want E_v~ 50 MeV to satisfy $Q \lesssim \frac{1}{R}$

What do you want in a neutrino source for CENNS detection (and physics)?

- ✓ High flux
- ✓ Well understood spectrum
- ✓ Multiple flavors
- ✓ Pulsed source if possible, for background rejection
- ✓ Ability to get close
- ✓ Practical things: access, control, ...

Potential sources for detection of coherent scattering

Reactor vs stopped-pion for CENNS

Source	Flux/ v's per s	Flavor	Energy	Pros	Cons
Reactor	2e20 s ⁻¹ per GW	nuebar	few MeV	• huge flux	 lower xscn require very low threshold CW
Stopped pion	1e15 s ⁻¹	numu/ nue/ nuebar	0-50 MeV	 higher xscn higher energy recoils pulsed beam for bg rejection all flavors 	 lower flux potential fast neutron in-time bg

Stopped-Pion (DAR) Neutrinos

Typical flux: ~0.13 per flavor per proton at the SNS

Stopped-Pion Sources Worldwide

Comparison of stopped-pion neutrino sources

Facility	Location	Proton	Power	Bunch	Rate
		Energy	(MW)	Structure	
		(GeV)			
LANSCE	USA (LANL)	0.8	0.8	$600 \ \mu s$	$120 \ Hz$
ISIS	UK (RAL)	0.8	0.16	$2 \times 200 \text{ ns}$	50 Hz
BNB	USA (FNAL)	8	0.032	$1.6 \ \mu s$	5-11 Hz
SNS	USA (ORNL)	1.3	1	700 ns	60 Hz
MLF	Japan (J-PARC)	3	1	2 \times 60-100 ns	25 Hz
CSNS	China (planned)	1.6	0.1	<500 ns	$25~\mathrm{Hz}$
ESS	Sweden (planned)	1.3	5	$2 \mathrm{ms}$	$17 \mathrm{~Hz}$
DAEδALUS	TBD (planned)	0.7	$\approx 7 \times 1$	100 ms	2 Hz

Want:	 very high intensity v's ~below kaon threshold (low energy protons) nearly all decay at rest narrow pulses (small duty factor to mitigate bg)

Flux \propto power: want bigger! Duty factor: want smaller!

Flux \propto power Duty factor = T*rate (\blacklozenge)

Flux \propto power, high energy protons (non-DAR contamination) Duty factor = T*rate (\blacklozenge)

= max(T, 2.2 μ s)*rate (+ for μ dk ν 's)

Flux \propto power, high energy protons (non-DAR contamination) Duty factor = T*rate (\blacklozenge)

= max(T, 2.2 μs)*rate (+ for μdk v's)

Prospects at the SNS: Free Neutrinos!

Proton beam energy – 0.9 - 1.3 GeV Intensity - 9.6 · 10¹⁵ protons/sec Pulse duration - 380ns(FWHM) Repetition rate - 60Hz Total power – 0.9 – 1.3 MW Liquid Mercury target

SNS-Spallation Neutrino Source

Oak Ridge, TN

Y. Efremenko

1.3 GeV proton linear accelerator Accumulator ring Front-End Building Klystron Building Central Helium Liquefaction Building Linac Tunnel Ring **Radio-Frequency** Target Facility Future Target Support Building Buildings Center for Nanophase **Central Laboratory** Materials and Office Complex Sciences **Joint Institute for Neutron Sciences** 04517/arm Y. Efremenko **Main target**

The SNS as a Stopped-Pion Neutrino Source

In addition to kicking out neutrons, protons on target create copious pions: π⁻ get captured; π⁺ slow and decay at rest

Time structure of the SNS source

F. Avignone and Y. Efremenko, J. Phys. G: 29 (2003) 2615-2628

Background rejection factor ~few x 10-4~0.13 per flavorNeutrino flux: few times 107 /s/cm2 at 20 m~on per proton

These are *not* crummy old cast-off neutrinos...

They are of the highest quality!

Detector possibilities: various DM-style strategies

Integrated SNS yield for various targets

What physics could be learned from measuring this?

KS, Phys. Rev D 73 (2006) 033005

Basically, any deviation from SM cross-section is interesting...

- Weak mixing angle
- Non Standard Interactions (NSI) of neutrinos
- Neutrino magnetic moment
- Sterile oscillations
- •
- Nuclear physics

Weak mixing angle

L. M. Krauss, Phys. Lett. B 269 (1991) 407-411

Absolute rate in SM is proportional to $(N - (1 - 4\sin^2\theta_W)Z)^2$

Momentum transfer at SNS is Q~ 0.04 GeV/c

If absolute cross-section can be measured to ~10%, Weinberg angle can be known to ~5%

First-generation measurement not competitive: (assuming ~10% systematic error on rate) ... could eventually get to few percent (limited by nuclear physics)

Consider Non-Standard Interactions (NSI) specific to neutrinos + quarks

Model-independent parameterization

Davidson et al., JHEP 0303:011 (2004) hep-ph/0302093 Barranco et al., JHEP 0512:021 (2005) hep-ph/0508299

$$\mathcal{L}_{\nu H}^{NSI} = -\frac{G_F}{\sqrt{2}} \sum_{\substack{q=u,d\\\alpha,\beta=e,\mu,\tau}} [\bar{\nu}_{\alpha} \gamma^{\mu} (1-\gamma^5) \nu_{\beta}] \times (\varepsilon_{\alpha\beta}^{qL} [\bar{q} \gamma_{\mu} (1-\gamma^5) q] + \varepsilon_{\alpha\beta}^{qR} [\bar{q} \gamma_{\mu} (1+\gamma^5) q])$$

$$NSI \text{ parameters}$$

'Non-Universal': ε_{ee} , $\varepsilon_{\mu\mu}$, $\varepsilon_{\tau\tau}$ Flavor-changing: $\varepsilon_{\alpha\beta}$, where $\alpha \neq \beta$ \Rightarrow focus on poorly-constrained (~unity allowed) $\varepsilon_{ee}^{\ \mu V}$, $\varepsilon_{ee}^{\ dV}$, $\varepsilon_{\tau e}^{\ u V}$, $\varepsilon_{\tau e}^{\ dV}$

Cross-section for CENNS including NSI terms

For flavor α , spin zero nucleus:

$$\begin{split} \left(\frac{d\sigma}{dE}\right)_{\nu_{\alpha}A} &= \frac{G_{F}^{2}M}{\pi}F^{2}(2ME)\left[1-\frac{ME}{2k^{2}}\right] \times \\ \left\{\left[Z(g_{V}^{p}+2\varepsilon_{\alpha\alpha}^{uV}+\varepsilon_{\alpha\alpha}^{dV})+N(g_{V}^{n}+\varepsilon_{\alpha\alpha}^{uV}+2\varepsilon_{\alpha\alpha}^{dV})\right]^{2} \text{ non-universal} \right. \\ &+ \sum_{\substack{\alpha \neq \beta \\ q \neq \beta}} \left[Z(2\varepsilon_{\alpha\beta}^{uV}+\varepsilon_{\alpha\beta}^{dV})+N(\varepsilon_{\alpha\beta}^{uV}+2\varepsilon_{\alpha\beta}^{dV})\right]^{2}\right\} \text{ flavor-changing} \\ &\left.g_{V}^{p} &= \left(\frac{1}{2}-2\sin^{2}\theta_{W}\right), \quad g_{V}^{n} = -\frac{1}{2} \right] \text{ SM parameters} \\ &\left.\varepsilon_{\alpha\beta}^{qV} &= \varepsilon_{\alpha\beta}^{qL} + \varepsilon_{\alpha\beta}^{qR} \end{split}$$

- NSI affect total cross-section, not differential shape of recoil spectrum
- size of effect depends on N, Z (different for different elements)
- ε's can be negative and parameters can cancel

Non-Standard Interactions of Neutrinos

Can improve ~order of magnitude beyond CHARM limits with a first-generation experiment

(for best sensitivity, want multiple targets)

J. Barranco, O.G. Miranda, T.I. Rashba, Phys. Rev. D 76: 073008 (2007) hep-ph/0702175: Low energy neutrino experiments sensitivity to physics beyond the Standard Model

Specific NSI models: Z', leptoquark, SUSY with broken R-parity

Combination of targets will help (idea from Yuri Efremenko)

rate
$$\propto (N - (1 - 4\sin^2\theta_W)Z)^2$$

For 1% uncertainty on the *ratio* of rates in two different targets, get uncertainty on $sin^2\theta_W$:

Ar/Ne	2.6%
Xe/Ne	1.5%
Xe/Ar	3.9%

Phil Barbeau

NSI Search with ²⁰Ne-²²Ne

$$\frac{d\sigma}{dT}_{coh} = \frac{G_f^2 M}{2\pi} = G_V^2 (1 + (1 - \frac{T}{E_\nu})^2 - \frac{MT}{E_\nu})$$
$$G_V = ((g_v^p + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV})Z + (g_v^n + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV})N)F_{nucl}^V(Q)$$

- We take advantage of the precision in the ²⁰Ne/²²Ne system (¹³²Xe/¹³⁶Xe system less sensitive)
- If we include the SM radiative corrections, as well as statistical & systematic uncertainties, the ratio of the interaction rates for ²⁰Ne/ ²²Ne gives (For several tons of Ne)

Neutrino magnetic moment

Prediction of Standard Model: $\mu_{\nu} \sim 10^{-19} \mu_B \left(\frac{m_{\nu}}{1 \text{ eV}}\right)$

but extensions predict larger ones

Current best experimental limits:

Astrophysical limits: (red giant cooling, SN1987A)

 $\mu_{\nu} < 10^{-10} - 10^{-12} \mu_B$

Magnetic moment effect on the CENNS scattering rate

P. Vogel & J. Engel, PRD 39 (1989) 3378

SM cross-section:

$$\frac{d\sigma}{dE} = \frac{G^2}{\pi} M \left(1 - \frac{ME}{2k^2} \right) \frac{N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

Magnetic cross-section:

$$\frac{d\sigma}{dE} = \frac{\pi \alpha^2 \mu_{\nu}^2 Z^2}{m_e^2} \begin{pmatrix} \frac{1 - E/k}{E} + \frac{E}{4k^2} \end{pmatrix}$$
 (factor Z²
instead of Z
for electrons)

Cross-sections for 30 MeV ν

v-nucleus scattering at 30 MeV, Ne

Differential yield at the SNS: muon and electron flavors

Impossible to see excess for μ_v =10⁻¹⁰ for 10 keV thresholdbut several % excess over SM background at ~10 keV for μ_v =6x10⁻¹⁰ μ_B Experimentally maybe doable

Nuclear physics with coherent elastic scattering If systematics can be reduced to ~ few % level, we could start to explore nuclear form factors

P. S. Amanik and G. C. McLaughlin, J. Phys. G 36:015105, 2009 hep-ph.0707.4191 K. Patton et al., arXiv:1207.0693,

$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi} M \left[2 - \frac{2T}{E} + \left(\frac{T}{E}\right)^2 - \frac{MT}{E^2} \right] \frac{Q_W^2}{4} F^2(Q^2)$$
Form factor: encodes
information about nucleon
(primarily neutron) distributions

$$\begin{split} F_n(Q^2) &\approx \int \rho_n(r) \left(1 - \frac{Q^2}{3!} r^2 + \frac{Q^4}{5!} r^4 - \frac{Q^6}{7!} r^6 + \cdots \right) r^2 dr \\ &\approx N \left(1 - \frac{Q^2}{3!} \langle R_n^2 \rangle + \frac{Q^4}{5!} \langle R_n^4 \rangle - \frac{Q^6}{7!} \langle R_n^6 \rangle + \cdots \right) \,. \end{split}$$

Fit recoil spectral shape to determine these moments (requires very good energy resolution)

Example: 3.5 tonnes of Ar at **SNS (16 m)**

Will require stringent control of uncertainties on recoil energy

Oscillations to sterile neutrinos w/CENNS (NC is flavor-blind)

A. Anderson et al., PRD86 (2012) 013004, arXiv:1201.3805

Multi-cyclotron sources at different baselines (20 & 40 m) look for deficit and spectral distortion

Summary of physics reach for vA scattering

Basically, any deviation from SM x-scn is interesting...

- Standard Model weak mixing angle:

could measure to ~5% (new channel)

- Non Standard Interactions (NSI) of neutrinos: could significantly improve constraints
- (Neutrino magnetic moment): *muon* flavor hard, but conceivable; need low energy sensitivity
- (Sterile oscillations): hard, but also conceivable

At a level of experimental precision better than that on the nuclear form factors:

- Neutron distributions:

hard but conceivable; need good energy resolution, control of systematics

Possible phases of stopped-pion CENNS scattering experiments

Phase	Detector Scale	Physics Goal	Comments
Phase I	Few to few tens of kg	First detection	Precision flux/ systematics not needed
Phase II	Tens to hundreds of kg	SM test, NSI searches, oscillations	Start to get systematically limited
Phase III	Tonne to multi- tonne	Neutron structure, neutrino magnetic moment,	Control of systematics will be dominant issue; multiple targets

Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper

D. Akimov, A. Bernstein, P. Barbeau, P. Barton, A. Bolozdynya, B. Cabrera-Palmer, F. Cavanna, V. Cianciolo, J. Collar, R.J. Cooper, D. Dean, Y. Efremenko, A. Etenko, N. Fields, M. Foxe, E. Figueroa-Feliciano, N. Fomin, F. Gallmeier, I. Garishvili, M. Gerling, M. Green, G. Greene, A. Hatzikoutelis, R. Henning, R. Hix, D. Hogan, D. Hornback, I. Jovanovic, T. Hossbach, E. Iverson, S.R. Klein, A. Khromov, J. Link, W. Louis, W. Lu, C. Mauger, P. Marleau, D. Markoff, R.D. Martin, P. Mueller, J. Newby, J. Orrell, C. O'Shaughnessy, S. Pentilla, K. Patton, A.W. Poon, D. Radford, D. Reyna, H. Ray, K. Scholberg, V. Sosnovtsev, R. Tayloe, K. Vetter, C. Virtue, J. Wilkerson, J. Yoo, C.H. Yu

(Submitted on 1 Oct 2013)

- collaboration forming now
- detector technology choice:
 must be inexpensive, ready on fast timescale:
 Csl, Ge PPC or Xe 2-phase

 \bigcirc

- 1 behind BL-18 (no time limit)
- 2 between BL13 and BL 14 (?)
- 3 BL–8 (at least 3 years)
- 4 Basement under BL-1 (no time limi

4 possible locations identified at <~ 30 m from the SNS target (plus possible outside locations)

2

Could also site outside the target building if backgrounds inside are too high

Neutron background measurements underway inside the SNS target building

- Scintillator array (ORNL)
- Neutron scatter camera (Sandia)
- BEGe (LBNL)
- More to come...

Example Phase 2 Experiment (CLEAR): ~1/2 ton Ar/Ne @ 46 m

Water tank instrumented with PMTs for cosmic veto + iron shielding

Signal events/year: ~1100 in 456 kg of Ar >20 keVr ~450 in 391 kg of Ne >30 keVr

SNS neutronics group calculation of beam n spectrum + Fluka sim through shielding (T. Empl, Houston) + noble liquid detector sim (J. Nikkel, Yale)

Another interesting possibility: BNB at Fermilab

High-energy (~GeV) neutrinos for beam experiments are boosted forward... very far off-axis experiment sees isotropic stopped-pion flux

Summary

Coherent elastic neutrino-nucleus scattering offers many physics prospects!

- neutrino NSI is the low-hanging fruit
- multi-tonne-scale experiments will have broad program

For first-generation measurements, requirements are not stringent; systematic uncertainties may eventually become limiting need multiple targets, well-understood neutrino source

Stopped-pion sources are attractive for high energy neutrinos, good background rejection First measurement may be possible on a short timescale

> A "coherent" strategy is coming together