COHERENT Elastic Neutrino-Nucleus Scattering

Kate Scholberg, Duke University Neutrinos in Nuclear Physics, Knoxville, TN July 31, 2016

OUTLINE

- Coherent elastic neutrino-nucleus scattering
- Why measure it? **Physics motivations** (short and long term)
- How to measure it?
 - stopped pion sources and reactors
- Experiments going after CEvNS
 - The COHERENT Experiment at the Spallation Neutron Source

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

- Important in SN processes & detection
- Well-calculable cross-section in SM: **SM test, probe of neutrino NSI**
- Dark matter direct detection background
- Neutron form factors
- Possible applications (reactor monitoring)

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

\begin{aside}

Literature has CNS, CNNS, CENNS, ...

- I prefer including "E" for "elastic"... otherwise HEP types constantly confuse it with coherent pion production at ~ GeV energies
- I'm told "NN" means "nucleon-nucleon" to nuclear types (also CENNS is now a collaboration!)
- CEvNS is a possibility but those internal Greek letters are annoying

Sevens of the meme!
Sevens of the meme!

\end{aside}

The cross-section is *large*

Large cross section, but never observed due to tiny nuclear recoil energies:

to ~ keV to 10's of keV recoils

CEvNS from natural neutrinos creates ultimate background for direct DM search experiments

Understand nature of background (& detector response)

Non-Standard Interactions of Neutrinos: new interaction specific to v's

Can improve ~order of magnitude beyond CHARM limits with a first-generation experiment (for best sensitivity, want *multiple targets*)

K. Scholberg, PRD73, 033005 (2006)

Oscillations to sterile neutrinos w/CEvNS

(NC is flavor-blind): a potential new tool;

look for deficit and spectral distortion vs L,E

Examples:

 χ^2 Significance, 100Kg, 3yr, 5m, Unbinned, E_R >10 eV

B. Dutta et al, arXiv:1511.02834

Anderson et al., PRD86 (2012) 013004, arXiv:1201.3805

Neutrino magnetic moment

Signature is distortion at low recoil energy E

→requires low energy threshold

See also Kosmas et al., arXiv:1505.03202

Nuclear physics with coherent elastic scattering

If systematics can be reduced to ~ few % level, we can start to explore nuclear form factors

P. S. Amanik and G. C. McLaughlin, J. Phys. G 36:015105 K. Patton et al., PRC86 (2012) 024612

$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi} M \left[2 - \frac{2T}{E} + \left(\frac{T}{E}\right)^2 - \frac{MT}{E^2} \right] \frac{Q_W^2}{4} F^2(Q^2)$$

Form factor: encodes information about nuclear (primarily neutron) distributions

Fit recoil *spectral shape* to determine the F(Q²) moments (requires very good energy resolution,good systematics control)

Also note: tonne-scale underground look at astrophysical neutrinos

Rule out sterile oscillations using CEvNS (NC)

Billard et al., arXiv:1409.0050

Supernova neutrinos in tonne-scale DM detectors

A practical application in nuclear safeguards:

P. Huber, talk at NA/NT workshop, Manchester, May 2015

Presence of **plutonium breeder blanket** in a reactor has v spectral signature

$$^{238}\text{U} + n \rightarrow ^{239}\text{U} \xrightarrow{\beta} ^{239}\text{Np} \xrightarrow{\beta} ^{239}\text{Pu}$$

v spectrum is below IBD threshold

➔ accessible with CEvNS, but require low recoil energy threshold

How to detect CEvNS?

What do you want for your v source?

- ✓ High flux
- ✓ Well understood spectrum
- ✓ Multiple flavors (physics sensitivity)
- ✓ Pulsed source if possible, for background rejection
- ✓ Ability to get close
- ✓ Practical things: access, control, ...

Both cross-section and maximum recoil energy increase with neutrino energy:

Want energy as large as possible while satisfying coherence condition: $Q \leq \frac{1}{R}$ (<~ 50 MeV for medium A)

Supernova burst neutrinos Supernova relic

Atmospheric neutrinos

neutrinos

Solar neutrinos

Geoneutrinos

Reactor vs stopped-pion for CEvNS

Source	Flux/ v's per s	Flavor	Energy	Pros	Cons
Reactor	2e20 per GW	nuebar	few MeV	• huge flux	 lower xscn require very low threshold CW
Stopped pion	1e15	numu/ nue/ nuebar	0-50 MeV	 higher xscn higher energy recoils pulsed beam for bg rejection multiple flavors 	 lower flux potential fast neutron in-time bg

Stopped-Pion (πDAR) Neutrinos

Comparison of pion decay-at-rest v sources from duty cycle

Spallation Neutron Source

Oak Ridge National Laboratory, TN

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

Time structure of the SNS source

60 Hz pulsed source

Background rejection factor ~few x 10⁻⁴

The SNS has large, extremely clean DAR v flux

The COHERENT collaboration

arXiv:1509.08702

Institution	Board Member	
University of California, Berkeley	Kai Vetter	
University of Chicago	Juan Collar	
Duke University	Kate Scholberg	
University of Florida	Heather Ray	
Indiana University	Rex Tayloe	
Institute for Theoretical and Experimental Physics, Moscow	Dmitri Akimov	
Lawrence Berkeley National Laboratory	Ren Cooper	
Los Alamos National Laboratory	Steve Elliott	
National Research Nuclear University MEPhI	Alex Bolozdynya	
New Mexico State University	Robert Cooper	
North Carolina Central University	Diane Markoff	
North Carolina State University	Matt Green	
Oak Ridge National Laboratory	Jason Newby	
Sandia National Laboratories	David Reyna	
University of Tennessee, Knoxville	Yuri Efremenko	
Triangle Universities Nuclear Laboratory	Phil Barbeau	
University of Washington	Jason Detwiler	

The Foundation for The Gator Nation

 Collaboration: ~65 members, 16 institutions (USA+ Russia)

COHERENT Detectors and Status

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)	Data-taking start date; CEvNS detection goal	
Csl[Na]	Scintillating Crystal	14	20	6.5	9/2015; 3ơ in 2 yr	
Ge	HPGe PPC	10	22	5	Fall 2016	Ge
LAr	Single-phase	35	29	20	Fall 2016	
Nal[Tl]	Scintillating crystal	185*/ 2000	28	13	*high-threshold deployment to start, summer 2016	Na

- Csl installed July 2015; 185 kg of Nal in July 2016
- Two more detectors to be deployed with resources in hand, fall 2016
- For 5σ discovery, **need larger detectors**

Siting for deployment in SNS basement (measured neutron backgrounds low)

View looking down "Neutrino Alley"

Expected recoil signals

Prompt defined as first μ s; note some contamination from ν_e and ν_{μ} -bar ²⁹

Neutron Backgrounds

Several background measurement campaigns have shown that Neutrino Alley is neutron-quiet

Realistic steady-state-bg-subtracted recoil spectra (keVee/MeVee) compared to 1σ background fluctuations

short-term physics output

NIN measurement in SNS basement

- Scintillator inside CsI detector lead shield (now)
- Liquid scintillator surrounded by lead (swappable for other NIN targets) inside water shield

Potential upgrades

- additional Ge detectors
- larger LAr (up to few 100 kg)
- up to 7 ton Nal if threshold demonstrated
- additional targets/detectors

~5 σ in ~ 2 years with demonstration of N² dependence

The Low-Energy Recoil Frontier:

There is strong physics motivation to extend recoil energy threshold to sub-keV (reactor & source v's)

(magnetic moment, sterile osc w/small L, reactor monitoring, astrophysics,...)

Silicon CCDs (CONNIE)

J. Formaggio, E. Figueroa-Feliciano, and A. Anderson, PRD D 85, 013009 (2012) Mirabolfathi et al., 1510.00999

(+ Ge PPCs, spherical TPCs, ...)

Moroni et al., Phys.Rev. D91 (2015) 7, 072001

It's all about the backgrounds...

Summary

CEvNS offers many physics prospects!

- DM bg, detector response
- SM test: weak mixing angle, NSI, v magnetic moment
- SN physics, SN & solar v's
- Neutron form factors
- Sterile oscillations
- Nuclear safeguard applications

For first measurements, requirements are stringent; systematic uncertainties may eventually become limiting **need multiple targets**, well-understood neutrino source

Stopped-pion sources an attractive

first prospect: high energy v's, good bg rejection Reactor sources are attractive for high flux, flexibility Radioactive sources attractive for oscillometry COHERENT@ SNS

Extras/backups

Estimate for a specific configuration (Csl[Na] in lead shield):

J. Collar et al., Nucl.Instrum.Meth. A773 (2014) 56