

COHERENT at the Spallation Neutron Source

Robert L. Cooper New Mexico State University on behalf of the COHERENT Collaboration

CEvNS (pronounced sevens)

- Coherent Elastic Neutrino Nucleus Scattering
- Flavor blind Neutral Current process that scatters the entire nucleus as a whole
- To probe a "large" nucleus (few \times 10⁻¹⁵ m)

$$E_{\nu} \lesssim \frac{hc}{R_N} \cong 50 \text{ MeV}$$

• Recoiling nucleus is detection signature

$$E_r^{\rm max} \simeq \frac{2E_{\nu}^2}{M} \simeq 50 \ {\rm keV}$$

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

8/6/2016

Structure CEvNS Signal

Standard Model Prediction

$$\frac{d\sigma}{dE} = \frac{G_F^2}{4\pi} \left[\left(1 - 4\sin^2 \theta_w \right) Z - N \right]^2 M \left(1 - \frac{ME}{2E_\nu^2} \right) F(Q^2)^2$$

 $\approx 0 \rightarrow$ protons have small effect

square of sum \rightarrow part of coherence condition

nuclear form factor → distribution of neutrons

• Recoil energy (M^{-1}) and rate (N^2)

¹K. Scholberg, *Phys. Rev.* D73 (2006) 033005. arXiv:hep-ex/0511042.

8/6/2016

Physics Motivations for CEvNS

- Non-Standard Interactions
- Multiple targets can greatly improve CHARM experiment limits on NSI
- Meaningful limits can be set with first generation experiments
- NSI may have significant influence in DUNE CPviolation search¹

$$\mathcal{L}_{\nu H}^{NSI} = -\frac{G_F}{\sqrt{2}} \sum_{\substack{q=u,d\\\alpha,\beta=e,\mu,\tau}} [\bar{\nu}_{\alpha} \gamma^{\mu} (1-\gamma^5) \nu_{\beta}] \times (\varepsilon_{\alpha\beta}^{qL} [\bar{q} \gamma_{\mu} (1-\gamma^5)q] + \varepsilon_{\alpha\beta}^{qR} [\bar{q} \gamma_{\mu} (1+\gamma^5)q])$$

(Plot) K. Scholberg, *Phys. Rev.* **D73** (2006) 033005. arXiv:hep-ex/0511042. ¹M. Masud, A. Chatterjee, P. Mehta, arXiv:1510.08261 [hep-ph].

8/6/2016

Physics Motivations for CEvNS

 Neutrino oscillations can use NC, flavor-blind CEvNS interaction to look for L/E shape distortions and disappearance

(Left Plot) A.J. Anderson et al., *Phys. Rev.* **D86** (2012) 013004. arXiv:1201.3805 [hep-ph]. (Right Plot) J. Dutta et al., arXiv:1511.02834 [hep-ph].

8/6/2016

Physics Motivations for CEvNS

- CEvNS is irreducible background for deep underground WIMP Dark Matter searches
- Supernova cross sections (or direct detection) via CEvNS

(Left Plot) J. Billard, E. Figueroa-Feliciano, L. Strigari. arXiv:1307.5458 [hep-ph]. (Right Plot) K. Scholberg, *Phys. Rev.* D73 (2006) 033005. arXiv:hep-ex/0511042. ¹A. Drukier and L. Stodolsky, *Phys. Rev.* D30 (1984) 2295.

8/6/2016

More Physics Motivations for $CE_{\rm V}NS$

- Neutrino magnetic moment distorts recoil spectrum
- Low-mass Dark Matter searches
- Nuclear physics form factors

(Bottom-Left Plot) K. Patton et al., *Phys. Rev.* C86 (2012) 024612 arXiv:1207.0693 [nucl-th]. (Bottom-Right Plot) Horowitz et al, *Phys. Rev.* D86 (2012) 013004. arXiv:1201.3805 [hep-ph].

8/6/2016

R.L. Cooper - ICHEP 2016

per ton

Events per keV per yr

Physics Goals for COHERENT

- Measure N² dependence across multiple targets
- Deploy detectors in low-neutron-background basement area
- Measure relevant neutrino-induced neutrons and quenching factors

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVnr)	Data-taking start date; CE∨NS detection goal	
Csl[Na]	Scintillating Crystal	14	20	6.5	9/2015; 3 o in 2 yr	
Ge	HPGe PPC	10	22	5	Fall 2016	
LAr	Single-phase scintillation	35	29	20	Fall 2016	
Nal[Tl]	Scintillating crystal	185* /2000	28	13	*high-threshold deployment started July 2016	Nal(TI)

8/6/2016

Physics Goals for COHERENT

- Measure N² dependence across multiple targets
- Deploy detectors in low-neutron-background basement area
- Measure relevant neutrino-induced neutrons and quenching factors

8/6/2016

Physics Goals for COHERENT

- Measure N² dependence across multiple targets
- Deploy detectors in low-neutron-background basement area
- Measure relevant neutrino-induced neutrons and quenching factors

8/6/2016

Neutrino Production at the SNS

- 0.9-1.3 GeV protons on liquid mercury target produces π⁺
- Total power: 0.9–1.4 MW

 $\pi^+ \rightarrow \mu^+ + \nu_\mu$

- Pulsed at 60 Hz for ~400 ns
 → few × 10⁻⁴ duty (steady-state background reduction)
- $43 \times 10^6 \text{ v/cm}^2\text{/s} 20 \text{ m at SNS}$ maximum power (1.4 MW)

8/6/2016

Detector Subsystems: Csl[Na]

- Na doping reduces afterglow seen in common TI doping
 - TI doping insufficient for near-surface experiment
- Cs and I surround Xe in periodic table, very similar nuclear recoil response
- Statistical nuclear-/electronrecoil separation
- Quenching factors measured ۲ \rightarrow 5 keVnr is easily achieved

salts, electroformed Cu can (PNNL), ULB window and reflector.

¹J.I. Collar et al., *Nucl. Instrum. Meth.* A773 (2014) 56.

8/6/2016

Detector Subsystems: NaI[TI]

- 185 kg prototype for initial deployment
- 2 ton next phase deployment
- Up to 9 tons available
- NC CEvNS interaction
- Also CC interaction with v_e
- <u>https://twitter.com/NalvE_SNS</u>

T.C	$re(\nu_e, e) = 00$	Stopped n/h	TATUMEN'	200 ± 100(stat) ± 40(sys)	204 [Shen] (Noibe et us., 1999a)
⁷¹ Ga	$^{71}\mathrm{Ga}(u_e,e^-)^{71}\mathrm{Ge}$	⁵¹ Cr source	GALLEX, ave.	$0.0054 \pm 0.0009 ({\rm tot})$	0.0058 [Shell] (Haxton, 1998)
		⁵¹ Cr	SAGE	$0.0055 \pm 0.0007(tot)$	
		³⁷ Ar source	SAGE	$0.0055 \pm 0.0006 ({\rm tot})$	0.0070 [Shell] (Bahcall, 1997)
¹²⁷ I	$^{127}{ m I}(u_e,e^-)^{127}{ m Xe}$	Stopped π/μ	LSND	$284\pm91(\mathrm{stat})\pm25(\mathrm{sys})$	210-310 [Quasi-particle] (Engel et al., 1994)

¹J.A. Formaggio and G. Zeller, Rev. Mod. Phys. 84 (2012) 1307.

8/6/2016

Detector Subsystems: Liquid Argon

- Single-phase, scintillation only
- 35-kg fiducial volume
- Readout is 2 × Hamamatsu R5912-02MOD PMT (8" cryogenic, high-gain)
- Excellent nuclear-/electronrecoil PSD demonstrated by miniCLEAN
- SCENE has measured quenching factors¹
- ³⁹Ar controllable with PSD and duty factor

¹H. Cao et al., SCENE Collaboration, *Phys. Rev.* D91 (2015) 092007. arXiv:1406.4825 [physics.ins-det].

8/6/2016

Detector Subsystems: Germanium

- HPGe PPC type that have excellent low-energy resolution and low threshold
- Repurposing of Majorana Demonstrator and LANL ^{nat}Ge detectors
- First phase is 5-10 kg of existing BeGe detectors in a copper, lead, and polyethylene shielding system
- Second phase could add more detector mass with larger (C4style) detectors
- Quenching factors well known

R.L.

8/6/2016

Neutron Backgrounds: Sandia NSC

- Sandia Neutron Scatter Camera
- Neutron imager from neutron double scatter
- Measured neutrons across SNS complex
- Basement is very neutron quiet

¹N. Mascarenhas et al., *IEEE Trans. Nucl. Sci.* 56 (20109) 1269.

8/6/2016

Neutron Backgrounds: SciBath

- 80 L volume of liquid scintillator read out by 768 wavelength shifting fiber → high-energy event topology
- Measured at LAr site in SNS Neutrino Alley
- Low-energy neutrons prompt observed, delayed neutrons not observed and a delayed neutron rate limit is being set

¹R. Tayloe, Nucl. Instrum. Meth. A562 (2006) 198.

8/6/2016

Conclusions

- COHERENT is deploying a suite of detector technologies in the neutron-quiet SNS basement
- First light measurement to test N² dependence
- Sensitivities shown below (LAr is being completed)

8/6/2016

 LAr expects ~300/700 events on ~100/900 steady-state backgrounds in a year in prompt/delayed region

BACKUPS

8/6/2016

Neutrino Induced Neutrons (NINs)

- Pb shielding interacts with ν_e and can break-up to 1 n or 2 n
- Shield can give CEvNS backgrounds
- "Neutrino Cubes" testing neutron production from Pb, Fe inside water shield
- <u>https://twitter.com/theLeadNube</u>

8/6/2016

Quenching Measurements

- Chicago has used commercial D-D neutron generator
- Duke group at TUNL have created a tunable p-⁷Li and D-D neutron sources to test low-energy nuclear recoils for quenching factor measurements

TUNL Setup

Chicago Setup

8/6/2016