Background Studies for the COHERENT Experiment at the Spallation Neutron Source (P3.002)

COHERENT Collaboration

Collaborating Institutions
1Duke U., 2Indiana U., 3ORNL, 4MEPhI, 5New Mexico State U., 6North Carolina Central U., 7North Carolina State U., 8Sandia National Lab, 9TUNL, 10U. of Chicago, 11U. of Tennessee, 12U. of Washington

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) Experiment

\[\nu + A \rightarrow \nu + A \]

A neutrino ‘smacks’ a nucleus via exchange of a Z, and the nucleus recoils as a whole; coherent up to \(E_{\nu} \sim 50 \text{ MeV} \)

Detection observable – measure low-energy nuclear recoil.

Neutrino source – Oak Ridge National Laboratory, Spallation Neutron Source (SNS)

Multiple Detector Systems – located in SNS basement hallway

- CsI[Na] – 14 kg, 19 m
- HPGe PPC – 10 kg, 21 m
- NaI[Tl] – 185 g (future 2T), 22 m
- CENNS10 LAr – 35 kg, 28 m

(Click for COHERENT Poster P2.038)

Neutrino Beam Flux and Timing - enables background rejection

- Use timing window to reduce steady-state backgrounds by factor of \(10^8 - 10^9 \)
- Precise characterization of environmental backgrounds unrelated to the beam
- Neutron Shielding helps and hurts
 - Use timing window to reduce steady-state backgrounds by factor of \(10^8 - 10^9 \)
 - Precise characterization of environmental backgrounds unrelated to the beam
- Neutron-induced neutron production – poster P2.039

Neutron Background Studies

Combination of multiple technologies and complementary analysis by multiple groups provides confidence in background results

- Systems available for monitoring:
 - Initial studies with portable LS cells, coded aperture imager (ORNL, U. Tennessee)
 - Systematic studies with Neutron Scatter Camera (Sandia National Lab)
 - Single-Plane Single Scatter (SciBath) detector (Indiana U.)

All neutron studies indicate the basement location is “neutron quiet” in delayed beam window and steady state: fast neutron flux greatly reduced and low-energy neutrons easily shielded

Scatter Camera Measurement

- Fast neutron backgrounds in the basement are clearly associated with 800 ns protons on target
- A 2.2 \(\mu \text{s} \) window after the beam would highlight muon decay neutrinos \((\nu_{\mu}, \bar{\nu}_{\mu})\)
- Neutron backgrounds reduced by at least an order of magnitude and are lower in energy in the delayed window compared to prompt

SciBath Detector Measurement

- Liquid scintillator with 3 sets of mutually orthogonal, parallel arrays of wavelength-shifting optical fibers
- 3D fiber grid gives fine position resolution and accurate directional spectra
- Timing resolution \(~20\text{ns}~\)

Measurements in LAr Position

Prompt neutron flux \((2.1 \pm 0.4) \times 10^{-5} \text{n/m}^2/\text{spill}~\)
Msnu flux \((60 \pm 3) \mu\text{s/m}^2/\text{s}~\)

delayed neutron flux – expected to be low

Neutrino-Induced-Neutron production – poster P2.039

- Gamma-ray backgrounds – easily shielded; do not pose a problem
- Nearby pipe – source of 511 keV \(\gamma \) measured: \(-25 \gamma/s/cm^2/s\)
- wall flux \(-0.9 \gamma/s/cm^2/s\), floor flux \(-1 \gamma/s/cm^2/s\) (measured and simulated)

~100 keV – 1 MeV neutrinos in the detector can produce similar recoil spectra as our neutrino scattering signal \(\rightarrow \) Neutron backgrounds must be carefully characterized

Neutrino-Induced-Neutron production – poster P2.039

- Gamma-ray backgrounds – easily shielded; do not pose a problem
- Nearby pipe – source of 511 keV \(\gamma \) measured: \(-25 \gamma/s/cm^2/s\)
- wall flux \(-0.9 \gamma/s/cm^2/s\), floor flux \(-1 \gamma/s/cm^2/s\) (measured and simulated)

~100 keV – 1 MeV neutrinos in the detector can produce similar recoil spectra as our neutrino scattering signal \(\rightarrow \) Neutron backgrounds must be carefully characterized

This work is supported in part by ORNL SEED funds, Sandia National Lab LDRD and NA-22 funds, and Indiana University National Science Foundation grants.

COHERENT Collaborators are supported by the US Department of Energy Office of Science, National Science Foundation, and Sloan Foundation. The collaboration acknowledges the support of ORNL personnel especially at the SNS, Pacific Northwest Laboratories and Triangle Universities Nuclear Laboratory for detector resources, and Fermilab for the loan of the CENNS-10 apparatus.

DMM acknowledges support from NSF Award HRD-1345219, NASA Award NNX09AV07A