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 OUTLINE  
-  Coherent elastic neutrino-nucleus scattering  
 
-  Why measure it?  Physics motivations 
      (short and long term) 
                        
-  How to measure it?   

-  stopped pion sources and reactors 
  

-  Experiments going after CEvNS 
-   The COHERENT Experiment at the 

         Spallation Neutron Source 
 



- Important in SN processes & detection 
- Well-calculable cross-section in SM: 
    SM test, probe of neutrino NSI 
-  Dark matter direct detection background 
- Neutron form factors 
- Possible applications (reactor monitoring) 

A neutrino smacks a nucleus  
via exchange of a Z, and the  
nucleus recoils as a whole; 
coherent up to Eν~ 50 MeV 
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 ν + A →  ν + A 

 Coherent elastic 
  neutrino-nucleus scattering  (CEvNS) 
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\begin{aside}!

\end{aside}!

Literature has CNS, CNNS, CENNS, ... 
 
-  I prefer including “E” for “elastic”... otherwise HEP types 

  constantly confuse it with coherent pion production 
   at ~ GeV energies 

-  I’m told “NN” means “nucleon-nucleon” to 
   nuclear types  (also CENNS is now a collaboration!) 

-  CEνNS is a possibility but those internal Greek 
   letters are annoying 

 èCEvNS, pronounced “sevens”... 
    spread the meme! 



 The cross-section is large  



Nuclear recoil energy spectrum in Ge for 30 MeV ν	

è but WIMP dark matter detectors developed 
       over the last ~decade are sensitive 
       to ~ keV to 10’s of keV recoils 

 Max recoil 
 energy is 2Eν

2/M  
 (25 keV for Ge) 

 

Large cross section, but never observed 
  due to tiny nuclear recoil energies:  



CEvNS from natural neutrinos creates ultimate 
   background for direct DM search experiments 

Understand nature of background (& detector response) 
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Clean SM prediction for the rate è measure sin2θWeff ;"
                                                                    deviation probes !
                                                                        new physics!

Example: hypothetical 
dark Z mediator 

(explanation for g-2 
anomaly)	

CEvNS sensitivity is @ low Q; "
  need sub-percent precision to compete w/ 
  electron scattering & APV, but new channel !

Plot based on 
arXiv: 1411.4088 



Can improve ~order of magnitude beyond CHARM limits with a 
 first-generation experiment  (for best sensitivity, want multiple targets) 

Non-Standard Interactions of Neutrinos: 
                              new interaction specific to ν’s 
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K. Scholberg, PRD73, 033005 (2006)"



Oscillations to sterile neutrinos w/CEvNS  
    (NC is flavor-blind): a potential new tool; 

Anderson et al., PRD86 (2012) 013004, arXiv:1201.3805 

Multi-πDAR sources at  
different baselines (20 & 40 m) 

100 kg 
Ge @ reactor 

456 kg Ar  

look for deficit and spectral distortion vs L,E  
Examples: 

B. Dutta et al, arXiv:1511.02834 
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Signature is distortion at low recoil energy E 

èrequires low energy threshold"

See also Kosmas et al., arXiv:1505.03202"



If systematics can be reduced to ~ few % level,  
  we can start to explore nuclear form factors 

P. S. Amanik and G. C. McLaughlin, J. Phys. G 36:015105 
K. Patton et al., PRC86  (2012) 024612 

Form factor: encodes information 
about nuclear (primarily neutron) 
distributions 

Nuclear physics with coherent elastic scattering 

Fit recoil spectral shape to determine the F(Q2) moments 
    (requires very good energy resolution,good systematics control) 

+: model 
 predictions 

Example: 
tonne-scale  
experiment 
at πDAR source 

10% uncertainty  
on flux 

Ar-C scattering 



Rule out sterile oscillations using CEvNS (NC) 

Billard et al., arXiv:1409.0050 Solar neutrinos 

projected limits 
if no steriles 

Also note: tonne-scale underground look at 
  astrophysical neutrinos 
     



Supernova neutrinos in tonne-scale DM detectors  

~ handful of events per tonne 
@ 10 kpc:  sensitive to 
all flavor components of the flux 

10 kpc 
L=1052 erg/s per flavor 
Eavg = (10,14,15) MeV 
α = (3,3,2.5) for 
(νe, νe-bar, νx) 



Presence of plutonium breeder blanket 
  in a reactor has ν spectral signature  

A practical application in nuclear safeguards: 
P. Huber, talk at NA/NT workshop, Manchester, May 2015 

ν spectrum is below IBD threshold  
     è accessible with CEvNS, but require low recoil energy threshold 

Upper: core+blanket 
Lower: core only 



ü  High flux 
 
ü   Well understood spectrum 

ü   Multiple flavors (physics sensitivity) 
 
ü   Pulsed source if possible, for background rejection 

ü   Ability to get close 
 
ü   Practical things: access, control, ... 

How to detect CEvNS? 

è Need low recoil threshold 
& discrimination  
      (WIMP-style detector) 

ν	

What do you want for your ν source? 



Both cross-section and maximum recoil energy  
         increase with neutrino energy: 

40Ar target 

30 MeV ν’s 

3 MeV ν’s 

E
max

=
2E2

⌫

M

for same flux 

Want energy as large as possible while satisfying 
 coherence condition:         
                                     

(<~ 50 MeV for medium A) 



Supernova burst 
neutrinos!

Every ~30 years in 
the Galaxy,~few 10’s 
of sec burst,  all 
flavors"

Supernova relic 
neutrinos!

All flavors, "
low flux"

Atmospheric 
neutrinos!

Some component"
 at low energy"

Solar!
 neutrinos!

Most flux below "
1 MeV"

Geoneutrinos! Very low energy"

Coherent 
scattering 
eventually 
a bg for 
DM expts 



Reactors! Low energy, but very"
high fluxes possible; ~continuous 
source, good bg rejection needed"

Stopped pions!
(decay at rest)"

High energy, pulsed beam 
possible for good background 
rejection; possible neutron 
backgrounds"

Radioactive 
sources!
(electron capture)"

Portable; can get very short 
baseline, monochromatic"

Beam-induced!
radioactive sources!
(IsoDAR)"

Relatively compact,"
higher energy than reactor; not 
pulsed"

Low-energy!
 beta beams!

Tunable energy, but"
not pulsed"
 "

γ=10 
 boosted 
 18Ne νe 

51Cr 

Low energy challenging 

Does not exist yet 

Does not exist yet 



Source Flux/ 
 ν’s per s 

Flavor Energy Pros Cons 

Reactor 2e20  per 
GW 

nuebar few MeV •  huge flux 
 
 

•  lower xscn 
•  require very 

low 
threshold 

•  CW  
Stopped pion 1e15  numu/

nue/
nuebar 

0-50 MeV •  higher xscn 
•  higher 

energy 
recoils 

•  pulsed 
beam for bg 
rejection 

•  multiple 
flavors 

•  lower flux 
•  potential 

fast neutron 
in-time bg 

Reactor vs stopped-pion for CEvNS 



3-body decay: range of energies 
   between 0 and mµ/2 
   DELAYED (2.2 µs) 

2-body decay: monochromatic 29.9 MeV νµ	
                     PROMPT 

Stopped-Pion (πDAR) Neutrinos 

⇥+ � µ+ + �µ

µ+ � e+ + �̄µ + �e



better 

from duty cycle 
Comparison of pion decay-at-rest ν sources 

/ ⌫ flux



Proton beam energy: 0.9-1.3 GeV 
Total power: 0.9-1.4 MW 
Pulse duration: 380 ns FWHM 
Repetition rate: 60 Hz 
Liquid mercury target 

Oak Ridge National Laboratory, TN 



60 Hz pulsed source 

 Background rejection factor ~few x 10-4   

Time structure of the SNS source 

Prompt νµ from π decay in 
time with the proton pulse 

Delayed anti-νµ, νe"
on µ decay timescale 



The SNS has large, extremely clean DAR ν flux 

Note that contamination from 
non π-decay at rest 
 (decay in flight, kaon decay, µ capture...) 
 is down by several orders of magnitude  

SNS flux (1.4 MW): 
 430 x 105 ν/cm2/s 
 @ 20 m 

BNB off-axis flux 
 (32 kW): 
 5 x 105 ν/cm2/s  
@ 20 m  (CENNS) 



These are not crummy  
old cast-off neutrinos... 



These are not crummy  
old cast-off neutrinos... 

They are of the  
 highest quality! 



The COHERENT collaboration 

28 

• Collaboration: ~65 members, 
  16 institutions (USA+ Russia) 

arXiv:1509.08702!



COHERENT Detectors and Status 
   

Nuclear	
Target	

Technology	 Mass	
(kg)	

Distance	
from	source	
(m)	

Recoil	
threshold	
(keVr)	

Data-taking	start	
date;	CEvNS	detecBon	
goal	

CsI[Na]	 Scin%lla%ng	
Crystal	

14		 20	 6.5	 9/2015;	3σ	in	2	yr	

Ge	 HPGe	PPC	 10	 22	 5	 Fall	2016	

LAr	 Single-phase	 35		 29	 20	 Fall	2016	

NaI[Tl]	 Scin%lla%ng	
crystal	

185*/
2000	

28	 13	 *high-threshold	
deployment	to	start,	
summer	2016	

•  CsI installed July 2015; 185 kg of NaI in July 2016 
•  Two more detectors to be deployed with resources in hand, 

     fall 2016 
•  For 5σ discovery, need larger detectors!
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LAr	 NaI	
Ge	

CsI	
NIN	
cubes	

Siting for deployment in SNS basement 
 (measured neutron backgrounds low) 

View looking 
down “Neutrino Alley” 
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Expected recoil signals 

Prompt defined as  first µs; note some  contamination from νe and νµ-bar 
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Neutron Backgrounds 
Several background measurement campaigns have 
 shown that Neutrino Alley is neutron-quiet 
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Realistic steady-state-bg-subtracted recoil spectra (keVee/MeVee) 
    compared to 1σ background fluctuations 

CsI[Na] 

Ge 

NaI [Tl] 



Currently measuring neutrino-induced neutrons 
     in lead, (iron, copper), ... 
 
 
 

-  likely a non-negligible  
background, 
especially in lead shield 

-  valuable in itself, e.g. HALO SN detector 

-  short-term physics output 
 
 
 

 

 

 

 
 

 
 
 

νe + 208Pb →  208Bi* + e-  

1n, 2n emission 

CC 

νx + 208Pb → 208Pb* + νx  

1n,  2n, γ emission 

NC 



   NIN measurement in SNS basement 
- Scintillator inside CsI detector lead shield (now) 
- Liquid scintillator surrounded by lead (swappable for other NIN targets) 
      inside water shield 
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Potential upgrades 
-  additional Ge detectors 
-  larger LAr (up to few 100 kg) 
-  up to 7 ton NaI if threshold demonstrated 
-  additional targets/detectors 

~5σ in ~ 2 years"
 with demonstration"
 of N2 dependence"



The Low-Energy Recoil Frontier:   
There is strong physics motivation to extend  
  recoil energy threshold to sub-keV (reactor & source ν’s) 
 (magnetic moment, sterile osc w/small L, reactor monitoring, astrophysics,...)  

It’s all about the backgrounds... 
(+ Ge PPCs, spherical TPCs, ...) 

       Cryogenic 
solid-state bolometers 

Silicon CCDs 
(CONNIE) 

Moroni et al.,  
Phys.Rev. D91 (2015) 7, 072001 

J. Formaggio, E. Figueroa-Feliciano, and A.  
    Anderson, PRD D 85, 013009 (2012) 
Mirabolfathi et al., 1510.00999 
 

RICOCHET MINER 



Summary 
CEvNS offers many physics prospects! 
 
 
 
 
 
 

ν	-  DM bg, detector response 
-  SM test: weak mixing angle, NSI,  ν magnetic moment 
-  SN physics, SN & solar ν’s 
-  Neutron form factors 
-  Sterile oscillations 
-  Nuclear safeguard applications 

For first measurements, requirements are stringent; 
  systematic uncertainties may eventually become limiting 
     need multiple targets, well-understood neutrino source 

Stopped-pion sources an attractive 
first prospect: high energy ν’s, 
     good bg rejection   
Reactor sources are attractive for  
   high flux, flexibility 
Radioactive sources attractive for 
   oscillometry 

COHERENT@ SNS 

low-energy frontier: 
  RICOCHET, 
 MINER, CONNIE, .... 
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Extras/backups 



Estimate for a specific configuration (CsI[Na] in lead shield): 

Neutrino-induced neutrons 
(NINs) not negligible w/lead 
shield! è need careful 
shielding design J. Collar et al., Nucl.Instrum.Meth. A773 (2014) 56 


