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Coherent v-Nucleus Scattering

- Predicted in 1974 with the realization of
the weak neutral current: as yet

unobserved g ;{" o
[ L ]
. ” 'B
- Neutrino scatters coherently off all y. k f \
Nucleons — cross section | - —-«"--..u--- N
enhancement: g o< N2 Z boson

- Initial and final states must be identical:
Neutral Current elastic scattering

- Nucleons must recoil in phase —low
momentum transfer gR <1 — very low
energy nuclear recoill

D. Z. Freedman, PRD 9 (5) 1974



Why Measure Coherent v-Nucleus Scattering?

Largest o in Supernovae dynamics. We should measure it to validate the models
J.R. Wilson, PRL 32 (74) 849




Why Measure Coherent v-Nucleus Scattering?

CEVNS is an irreducible background from WIMP searches, and should be measured
in order to validate background models and detector responses.
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Why Measure Coherent v-Nucleus Scattering?

By measuring the relative rates on several nuclear targets we dramatically extend the
sensitivity of searches for Non-Standard v Interactions K. scholberg, Phys.Rev.D73:033005,2006

J. Barranco et al., JHEP0512:021,2005
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Why Measure Coherent v-Nucleus Scattering?

A high-a, neutral current detector would
be a clean way to search for sterile v’'s

A. Drukier & L. Stodolsky, PRD 30 (84) 2295
The development of a coherent neutrino
scattering detection capability provides
perhaps the best way to explore any
sterile neutrino sector that could be
uncovered with ongoing experiments.

A. J. Anderson et sl, PRD 86 013004 (2012)

Coherent o proportional to Quw?. A
precision test of o is a sensitive test of
new physics above the weak scale. Miop
and Mhiggs are known — Remaining
theoretical uncertainties ~0.2%

L. M. Krauss, PLB 269, 407
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Neutrino Magnetic Moments
A. C. Dodd, et al., PLB 266 (91), 434

Measuring the neutron distribution
functions (Form Factors)

K. Patton, et al., PRC 86, 024216
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MOLLER Collsboration, arXiv:1411.4088
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The Spallation
Neutron Source

Pion Decay-at-Rest Neutrino
Source

. vflux4.3x10’ vem'sTat20 m

Pulsed: 800 ns full-width at 60 Hz

<1% contamination from non-CEVNS scatters ~4x10%-5 background reduction
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Making an Unambiguous Measurement

- Observe the pulsed v time-structure
- Observe the 2.2 ys characteristic decay of muon decay v's

.- Observe the N? cross section behavior between targets
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Detector Subsystems: Csl[Na]

14 kg low-
background
Csl[Na] crystal

- Large N: 74, 78

- Already installed at
SNS
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Detector Subsystems: HPGe PPCs

- Repurposed Majorana
Demonstrator Prototype
Module
15kg PPC detector mass

- Smaller N: 38-44

- Excellent resolution at low
energy

- Well-measured
guenching factor
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Detector Subsystems: 2-Phase Xe

100kg fiducial
mass

Large N: 74-82*

LT L P
.......

Assembled at
MEPhHI

1680 mm

Preparations being
made for shipment
to ORNL

M
v

*N = 82 conspicuously depleted in this sample. 1



Backgrounds

The SNS is a facility designed to
produce neutrons (> 100 MeV), and
that those neutrons are pulsed with
the same time structure of the
neutrinos (with the exception of
the characteristic decay time of
the muon).

Neutron image of the SNS target, through shielding
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Hunting for a Background-Free Locat
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Extensive background measurement
/

campaign since 2013 points to the
SNS basement as the optimal
location ( >10* reduction)
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New Background: v-induced neutrons (NINs)

Csl(Na)

The detector shields use
several tons of lead

Neutrons can be produced
near the detectors. They will be
pulsed, and share the 2.2 us
decay time of the v’s

Need to measure this o and

optimize the shields ve +*% Pb = *Bi* + e (co)
{
208—y B,
Important for HALO PTEY T
v, +208 pp = 208pp= 4y (NC)
ll

08—y Ph + v + yn.
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Measuring the v-induced Neutrons

Photomultiplier tubes (PMTs) for liquid scintillator cells Plastic scintillator panels

Total mass of 4 panels: 21.1 kg

1"-0D threaded aluminum rod

3/8" aluminum celling plate
PMTs for plastic
scintillator panels

3/4"-QD sted

Lead
Divided into B volumes

Modular water shielding Total mass: 895 kg

3.5-gallon "Waterbricks"
52 in design
Plastic mass: 59.4 kg

4.5"-diameter
9-lang
Equid sdntillator cell

1 1/4" steel plate
Supported by five 1"-0D steel rods

- Several palletized (mobile) targets with LS detectors delivered to the
SNS

- Will measure neutrino-induced-neutrons on Pb, Fe and Cu
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Three Detectors in Concert

ll]-'”,:----

Cross Section cm?

107"

I'II'I'II-IILI"IJII'II'I'II'II'II'I'II"II

[ =3% deviations due to nuclear ]

form factors for large A

IIIIIIIﬁllllrllll1ll1l1lllll1lIIIIII I B

0 20 30
MNeotron Number

. Statistics and systematics limited.

- 10% beam flux uncertainty not included

40 50 o 7O BO 90

18



g’i
Summary ((Caﬁ@

- A new collaboration has formed, combining the efforts of several groups that

have been aiming towards a coherent neutrino-nucleus scattering measurement.

- Background studies indicate the basement as the optimal location
- Csl[Na] has already been delivered and installed

- Several detectors to measure the v-induced induced neutron emission cross-
sections on Pb, Fe and Cu installed an on their way

- We expect each detector sub-system to reach ~ 5o significance for an excess,
pulsed with the beam around year 2-2.5

- This will allow us to confirm that the signal is beam-related (pulsed nature), a
result of v's (2.2 us decay) and due to CEVNS (o~N?)
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Backup Slides
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Backup Slides: Recoil Spectra
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Backup Slides: Quenching Factor Measurements

- Afacility has been developed at Duke/TUNL to enable the precision calibration of
all of these detectors. Csl(Na) and Nal(Tl) data in the can. Quenching factor
uncertainties are the dominant uncertainty on the cross-sections, after the beam
flux.

- The neutron beam is tunable (20 keV - 3 MeV), Monochromatic (3 keV width),
collimated (1.5 cm) and pulsed (2 ns)




