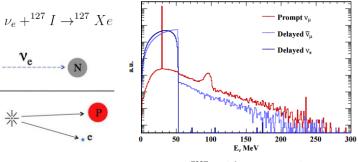


Measuring the Cross-Section of Charged-Current Neutrino Interactions in Sodium Iodide

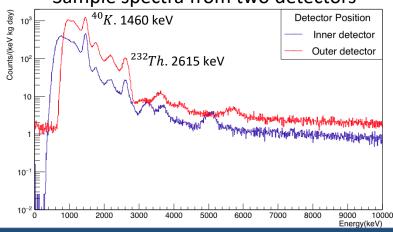
Benjamin D. Suh under the mentorships of Dr. Phil Barbeau and Dr. Jason Newby



Abstract

An array of twenty-four 7.7 kg sodium iodide (NaI[TI]) scintillating detectors has been deployed to the basement of the Spallation Neutron Source at Oak Ridge National Laboratory in order to observe and measure the cross-section of charged-current neutrino interactions on ^{127}I . Preliminary results and testing of these detectors will be presented herein. In addition, potential applications for observing coherent elastic neutrino-nucleus scattering (CEvNS) will be discussed. This work was conducted at the Spallation Neutron Source which is a DOE Office of Science User Facility and supported by the Office of High Energy Physics.

Introduction


- The cross-section of the charged-current neutrino interaction on ^{127}I has been measured before by the Liquid Scintillator Neutrino Detector Experiment.
- Using an array of Sodium lodide scintillating crystals doped with thallium iodide, in conjunction with neutrinos from the SNS, we hope to improve upon these measurements.
- The charged-current interaction, which is shown below, is sensitive to neutrinos with energy as low as .789 MeV.
- Whereas the LSND was sensitive to ${}^{127}Xe$, Nal scintillating crystals are sensitive to electrons, which gives additional information about path length and energy of the incident neutrino.

SNS neutrino energy spectrum

Expected Rates and Preliminary Results

- In 1994, Dr. Engel et al. reported a theoretical charged-current cross-section of 210-310 × 10⁻⁴² cm² for a quasiparticle neutrino.
- The SNS reports a total neutrino flux of $4.4 \times 10^7 \ cm^2 s^{-1}$, one-third of which are electron neutrinos. Combined with the theoretical rate by Dr. Engel et al., we have an expected event rate of .24 events per crystal month.
- Able to calibrate spectra using ${}^{40}K$ and ${}^{232}Th$ gamma peaks.
- Currently testing methods to reduce noise including vetoing events which pass through multiple detectors.
- SNS provides a 60Hz pulsed beam, which allows the use of the timing signal as a coincidence requirement.

Sample spectra from two detectors

CEvNS Applications

- Coherent elastic neutrino-nucleus scattering was predicted in 1974, but hasn't been observed.
- In this interaction, a neutrino with low energy transfers momentum to a target nucleus, producing recoil energies on the scale of tens of KeV.
- ²²Na is a possible candidate for observing CEvNS interaction.
- Currently designing a multi-ton Nal array and associated infrastructure to observe CEvNS in ²²Na in conjunction with charged-current neutrino interactions on ¹²⁷I.

Array Details

- The array, which occupies a 16"x16" footprint, consists of 24 NaI[TI] crystals for a target mass of 185kg.
- Each detector is fitted with a ScintiTech base.
- A layer of water shielding is currently in place, but options for a steel shell with muon veto panels are being explored.

Array without any shielding at Duke University.

Array with water shielding at ORNL.

References

J.A. Formaggio and G.P. Zeller. "'From ev to EeV: Neutrino Cross Sections Across Energy Scales'". Rev. Mod. Phys 84, 1307 (2012).

W.C. Haxton. "`Radiochemical Neutrino Detection via ${}^{127}I(v_e, e)$ ${}^{127}Xe$ ". Phys. Rev. Lett. 60, 9 (1988).

J.R. Distel, G.E. Allen, et al. "'Measurement of the Cross Section for the reaction of

 $^{127}I(v_e, e)^{127}Xe_{boundstates}$ with Neutrinos from the Decay of Stopped Muons^{III}. Phys. Rev. C68, 054613 (2003).

J. Engel, S. Pittel, and P.Vogel. "Capture of Solar and Higher-Energy Neutrinos by ^{127}I '". Phys. Rev. C50, 3 (1994).

http://www.askamathematician.com/wp-content/uploads/2011/07/inducedbetadecay1.jpg D. Akimov et al. (COHERENT). "The COHERENT Experiment at the Spallation Neutron Source'", 1509.08702v2 (2016).

J.I. Collar, N.E. Fields, T.W. Hossbach, J.L. Orrell, and B. Scholz. "`A First Characterization of PNNL's Nal[Tl] Modules'". Private Correspondence (2015).