Midlife activity predicts risk of dementia in older male twin pairs

Michelle C. Carlsona,b,*, Michael J. Helmsc, David C. Steffensc, James R. Burked, Guy G. Potterc, Brenda L. Plassmanc

aDepartment of Mental Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
bCenter on Aging and Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
cDepartments of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
dDepartment of Medicine (Neurology), Duke University Medical Center, Durham, NC, USA

Abstract

\textbf{Background:} This was a prospective study of dementia to elucidate mechanisms of disease risk factors amenable to modification and specifically to determine whether midlife cognitive and physical leisure activities are associated with delayed onset or reduced risk of dementia within older male twin pairs.

\textbf{Methods:} The co-twin control design used prospectively collected exposure information to predict risk of dementia 20 to 40 years later. The subjects were community-dwelling and nursing home residents living throughout the continental United States. We studied 147 male twin-pairs who were discordant for dementia or age of dementia onset and were members of the National Academy of Sciences–National Research Council Twin Registry of World War II veterans and participants in the Duke Twins Study of Memory in Aging. The main outcome measure was diagnosed dementia by using a two-stage screen and full clinical evaluation. Conditional odds ratios were estimated for the association between midlife leisure activities and late-life dementia.

\textbf{Results:} Greater midlife cognitive activity was associated with a 26% risk reduction for dementia onset. Protective effects were most robust in monozygotic twin pairs, where genetic and early-life influences were most tightly controlled, and for activities that were often cognitive and social in nature. Cognitive activity was particularly protective among monozygotic twin pairs carrying the \textit{apolipoprotein E} \textit{e4} allele, with a 30% risk reduction. Midlife physical activity did not modify dementia risk.

\textbf{Conclusions:} Participation in a range of cognitively and socially engaging activities in midlife reduced risk for dementia and AD in twins discordant for onset, particularly among twin pairs at elevated genetic risk, and might be indicative of an enriched environment.

© 2008 The Alzheimer’s Association. All rights reserved.

Keywords: Dementia; Midlife activity; Leisure activity; Twins

1. Introduction

The adage “use it or lose it” as applied to cognition holds great intuitive appeal to a growing population of aging individuals and suggests that cognitively enriching activity in midlife and later life will boost one’s “cognitive reserve.” This view has been supported by a number of epidemiologic studies suggesting that exposure to enriched environments might have measurable effects on cognition and risk for age-related neurodegenerative conditions such as Alzheimer’s disease (AD) [1–3]. These studies, however, are based largely on observational data of leisure activities in older adults and cannot rule out the reciprocal possibility that those with greater reserve select more complex and cognitively challenging activities [4,5]. Furthermore, it is difficult to separate the effects of activity from other early environmental factors known to influence cognitive reserve such as socioeconomic status and education [6]. Finally, retrospective assessment of midlife activity is subject to recall bias. As a result, studies are often limited in their ability to differentiate the reciprocal relationships between midlife activity and dementia risk.
Co-twin control analyses address some of these difficulties by controlling for some or all genetic factors and many key early life environmental factors associated with the predictor and the outcomes of interest (ie, AD). Twins are typically similar with respect to intellectual abilities and share a common environment into adulthood. Some of the other challenges can be addressed by collecting information on lifestyle activity during early adulthood before the onset of insidious neurodegenerative disorders that might in turn restrict or otherwise alter activity. With such a design, one twin study observed protective associations between midlife activity and reduced risk within female twin pairs discordant for AD but not among male twin pairs [7]. The effects of midlife cognitive activity in men might be better reflected by occupation [8,9], or they might exert less influence than genetic mediation of risk.

The co-twin study design will be equally informative to understand the role of physical activity and risk for dementia. Leisure-time physical activity throughout life has been shown to be protective against late-life cognitive decline and AD in some studies [10–13] but not in others [14–16].

We examined the association between midlife activity and subsequent risk for dementia in members of the National Academy of Sciences–National Research Center (NAS-NRC) Twin Registry of male World War II veterans. We hypothesized that greater midlife cognitive activity would be associated with lower risk of dementia or later age of dementia onset within twin pairs.

2. Design and methods

2.1. Participants

Participants were enrolled in the Duke Twins Study of Memory in Aging and were members of the NAS-NRC Registry of World War II veteran male twins. The NAS-NRC Twin Registry was constructed during the mid-1950s by using information from vital statistics offices in 42 states to identify white male twin pairs born during the years 1917 to 1927. The 54,000 pairs identified were estimated to represent 93% of the white male twin pairs born during this time period in the United States. Birth certificates from these individuals were then matched to files of the Department of Veterans Affairs to determine veteran status, resulting in 15,924 pairs that made up the original NAS-NRC Twin Registry [17]. In 1967, questionnaires collecting information on health and activities were mailed to those pairs in which both twins were thought to be alive. The response rate to this questionnaire was 84% overall, and both members of 4,700 pairs responded. A total of 2,112 of these individuals died from 1926 through 1966, and another 6,750 died before 1990 [17]. On the basis of a multi-step cognitive screening and dementia assessment protocol conducted from 1990 to 2005 (described below), a total of 316 twin pairs were identified in which at least one twin was diagnosed with dementia, and the other twin remained nondemented for at least 3 years after onset of dementia in the first twin. For 147 of these 316 pairs, both twins also completed a mail-in questionnaire in 1967 and were included in the present analyses. Zygosity was determined by buccal or blood DNA in 60 twin pairs and in 87 pairs from the best available information from questionnaire responses, fingerprint analysis, and anthropometric data from military records [18,19]. The latter method of establishing zygosity was estimated by cross-validation to be 97% correct [20]. Sixty-one percent of the pairs were monozygotic. All participants provided institutional review board–approved, informed consent before participation.

2.2. Outcome

The multi-step cognitive screening and assessment protocol and the number of individuals who completed each phase of the protocol are described in detail elsewhere [21]. Briefly, the 50-point Telephone Interview for Cognitive Status-modified (TICS-m) [22] was administered every 3 to 4 years from 1990 to 2002. When individuals could not complete the phone interview for any cognitive or physical reason, either the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) [23] or another brief proxy interview was administered to a proxy, typically the wife or an adult child, asking about the participant’s cognitive status. Predetermined cut points on each measure were used to identify individuals with suspected cognitive impairment. For the TICS-m, the cut point was an education-adjusted score of less than 28 on the first two waves of cognitive screening; this was increased to an education-adjusted score of less than 29 on the last two waves of screening to account for improvement as a result of retesting. We used the published cut point of 3.27 [24] for the IQCODE; for the other proxy instrument, a physician or psychologist reviewed the answers provided and determined whether the participant had suspected cognitive impairment. Those with suspected impairment on the TICS-m or proxy instruments were assessed further by using the Dementia Questionnaire (DQ) [25]. Those whose DQ indicated possible dementia were assessed in-home by a research nurse and a psychometrician. In-home assessments included an interview to obtain a history of cognitive symptoms and medical history from a knowledgeable informant. The participant completed a standardized neurologic examination, neuropsychological testing, blood or buccal DNA collection, and a scripted videotape segment capturing portions of the cognitive status and neurologic examinations. The neuropsychological battery included the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) battery, Trail Making Test, Parts A and B, Wechsler Memory Scale-Revised Logical Memory I (immediate) and Logical Memory II (delayed), Controlled Oral Word Association, Symbol Digit Modality Test, Finger Tapping Test, Grooved Pegboard Test, and
Shipley Vocabulary Test. Final diagnoses were assigned by a consensus panel of neurologists, geriatric psychiatrists, and psychologists after reviewing all information including relevant medical records. Nondemented co-twins were followed longitudinally at approximately 2-year intervals with telephone screening by using the TICS-m and DQ. When these interviews suggested the presence of dementia, an in-person clinical assessment was then done. A buccal DNA sample was collected by using a mail-in protocol for nondemented co-twins who did not receive an in-person clinical assessment. In approximately 20% of demented individuals, an in-person evaluation was not possible because the individual refused or was deceased. In those instances, the dementia diagnosis was based on all available data, including telephone interviews, medical records, and neuropathologic examination. Dementia was diagnosed on the basis of Diagnostic and Statistical Manual [of Mental Disorders], Third Edition, Revised (DSM-III R) [26] criteria. Age of onset of dementia was estimated as the age at which the individual unambiguously met DSM-III R criteria on the basis of a systematic review of the chronological history of cognitive and functional decline. These assessment and diagnostic procedures have been successfully used in several other epidemiologic studies that require differential diagnosis of dementia and have resulted in good sensitivity for the detection of dementia and high agreement between clinical and neuropathologic diagnoses [27–29].

2.3. Activity predictors

Participants completed a mail-in questionnaire in 1967 that included items surveying frequency of participation in 13 physical exercise and leisure activities, on a scale of 1 (never) to 2 (sometimes) to 5 (every day). To be consistent with prior studies, we tallied the number of activities endorsed “sometimes” or more often (2 to 5).

Total cognitive activity was measured by summing frequency of endorsement for nine of the 13 leisure activities. Because active processing is an important component of environmentally enriching activities, we further stratified the nine cognitive activities by using prior scales and ratings to discriminate novel information processing activities such as reading, studying for courses, and extra work (overtime or other employment) from activities that were more passive or receptive in their processing demands and did not require a response [2,4,30–32]. These receptive activities included watching television and listening to radio and going to movies, theater, art or music. Cognitive activities judged to discriminate novel processing demands included home and family activities, visiting with friends and relatives, club activities (eg, parties, card games), and home hobbies. Many of these intermediate cognitive activities were also social in nature.

Endorsement of the four physical activities, outdoor activities, sports, gardening and home improvement, and physical exercise after age 35 were tallied to yield a maximum activity score of 4.

2.4. Occupational demand

Occupational history was collected from a series of questions administered during telephone interviews by trained interviewers, directly from the participant in most cases and from a proxy informant if the participant was unable to complete the interview. Questions included (1) longest-held job, (2) job title, (3) specific job duties, (4) type of industry, and (5) beginning and ending years for the job. We have previously described our work with these data [9,33], in which we assigned specific occupational classifications to these responses by using the Dictionary of Occupational Titles (DOT), 4th edition [34]. Factor analysis of worker characteristics associated with the DOT-based occupational codes has identified a factor that was interpreted as reflecting the General Intellectual Demands of an individual’s job. This factor is similar to occupational complexity factors derived in other research with the DOT [35,36].

2.5. Statistical analyses

Mean activity scores for the first affected and unaffected twin-pair groups were compared by using a single-tailed t test under the hypothesis that higher activity would be associated with later dementia onset. Dependent proportional hazard (Cox) ratios were derived by modeling elapsed time from date of leisure activity assessment to either age of dementia or censoring age, while covarying for age at date of activity assessment. With dependent models, the risk estimated is the relative difference of midlife activity within the twins, not absolute levels, controlling for genes and many other unidentified factors, which might be assumed more similar for each of the twins than with any other randomly selected individual. One individual within each twin pair was classified as first affected on the basis of his estimated age of dementia onset relative to the other twin who developed dementia last or remained unaffected. Because of the imprecision in estimating age of dementia onset, discordance between twins required that the unaffected co-twin remain nondemented for at least 3 years after dementia onset in the first affected twin. Analyses were repeated, stratifying by zygosity and apolipoprotein E (APOE) ε4 allele as a risk modifier among those at elevated genetic risk. Many types of dementia have an extended prodromal period, so we then re-ran the models, extending the period of discordance from 3 to 5 years in an attempt to exclude the nondemented co-twins who might have preclinical dementia at the time of the demented twin’s onset. Because occupation accounts for a large portion of an adult man’s midlife activities, we re-ran the hazard models by using the General Intellectual Demand factor score as a covariate to assess whether this occupational characteristic altered the association between midlife activity and demen-
cognitive and physical activity item is presented in Table 2 for the total cohort and stratified by subsequent dementia status. Item analyses showed that demented twins went less often to the movies, theater, art, and music.

Table 3 presents the results of conditional logistic regression models examining whether total cognitive and total physical activity scores independently predicted risk for developing dementia first among discordant twin-pairs. Higher cognitive activity predicted a significant 26% reduction in risk for developing dementia first (odds ratio [OR], 0.74; confidence interval [CI], 0.60 to 0.92). When stratifying by novel, intermediate, and passive/receptive cognitive activity groupings, passive/receptive activity was associated with a 45% reduction in risk for developing dementia first (OR, 0.55; CI, 0.33 to 0.92). Differences in intermediate cognitive activity failed to reach significance (OR, 0.73; CI, 0.51 to 1.04). When the analyses were limited to those pairs in which the co-twin remained nondemented for 5 or more years after the onset of the proband, the sample was reduced to 117 pairs, but the results remained similar, with the exception that passive/receptive activity results no longer reached standard significance levels (OR, 0.57; CI, 0.32 to 1.04). When stratifying twin pairs by zygosity (monozygotic [MZ] vs dizygotic [DZ]) in Table 3, total cognitive activity remained a robust predictor, with a 30% risk reduction for dementia onset among MZ twin pairs.

Table 1: Demographic and health characteristics of twin pairs discordant for dementia onset by 3 or more years

<table>
<thead>
<tr>
<th></th>
<th>Demented first</th>
<th>Demented last or absent</th>
<th>P values</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>147</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Education (y)</td>
<td>13.9 (3.3)</td>
<td>13.5 (2.9)</td>
<td>.122</td>
</tr>
<tr>
<td>Age at AD onset</td>
<td>72.7 (5.6)</td>
<td>76.7 (3.4)</td>
<td>.0004</td>
</tr>
<tr>
<td>Age questionnaire</td>
<td>44.7 (3.6)</td>
<td>44.7 (3.4)</td>
<td>.688</td>
</tr>
</tbody>
</table>
| Values for medical conditions were based on McNemar test. Other P values were based on independent t tests.

3. Results

Table 1 presents the demographic and medical health characteristics of 147 dementia-discordant twin-pairs and shows that they were well-matched for education and prevalence of most health conditions that might influence cognition, such as diabetes, hypertension, and myocardial infarction (P values > .05), with the exception of stroke. Education levels were high, with many twins obtaining some post–high school education. During the 15-year follow-up in the Duke Twins Study, 37 of the 147 discordant twin-pair members both developed dementia. Twins were 44.7 years of age, on average, when they completed the activity questionnaire. Those with dementia had a mean age of onset of 72.7 years, and the nondemented were 81 years of age at the last follow-up, leading to an average span of 28 to 36 years between midlife activity and the censoring age.

We compared the 147 twin pairs included in the present analyses with the 169 pairs that were not included because either one or both members of the pair did not complete the 1967 mail-in questionnaire. Twin pairs completing the questionnaire had more years of education (13.7 vs 12.8; P = .0005); however, they did not differ in age of dementia onset (P = .43) or on the censoring age for the nondemented twin (P = .06). Activity rates for each item by type (cognitive or physical) in Table 2 indicated that the majority of twins were cognitively and physically active, with endorsement exceeding 60% on most items. Twin members who developed dementia first had significantly lower total cognitive activity scores than nondemented twin members (P = .004). The physical activity score did not differ between twin members. Frequency of endorsement for each leisure activity item among 147 twin pairs discordant for dementia onset

Table 2: Mean summed activity scores and by frequency of endorsement of each leisure activity item among 147 twin pairs discordant for dementia onset

<table>
<thead>
<tr>
<th>Leisure activity</th>
<th>All (%)</th>
<th>Dementia first (%)</th>
<th>Dementia last or absent (%)</th>
<th>t test, P values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive</td>
<td>5.8</td>
<td>6.3</td>
<td>.004*</td>
<td></td>
</tr>
<tr>
<td>Novel</td>
<td>2.2</td>
<td>2.3</td>
<td>.150</td>
<td></td>
</tr>
<tr>
<td>Studies</td>
<td>69</td>
<td>65</td>
<td>.144</td>
<td></td>
</tr>
<tr>
<td>Extra work</td>
<td>61</td>
<td>61</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Intermediate novel</td>
<td>3.1</td>
<td>3.2</td>
<td>.080</td>
<td></td>
</tr>
<tr>
<td>Home and family</td>
<td>99</td>
<td>98</td>
<td>.317</td>
<td></td>
</tr>
<tr>
<td>Visit with friends</td>
<td>95</td>
<td>94</td>
<td>.414</td>
<td></td>
</tr>
<tr>
<td>Home hobbies</td>
<td>71</td>
<td>67</td>
<td>.095</td>
<td></td>
</tr>
<tr>
<td>Club activities</td>
<td>51</td>
<td>50</td>
<td>.505</td>
<td></td>
</tr>
<tr>
<td>Passive/receptive</td>
<td>1.6</td>
<td>1.7</td>
<td>.016†</td>
<td></td>
</tr>
<tr>
<td>Go to movies, theater, art, music</td>
<td>98</td>
<td>96</td>
<td>.083</td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td>2.8</td>
<td>2.8</td>
<td>.527</td>
<td></td>
</tr>
<tr>
<td>Gardening and home improvement</td>
<td>93</td>
<td>93</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Outdoor activities</td>
<td>87</td>
<td>87</td>
<td>.819</td>
<td></td>
</tr>
<tr>
<td>Sports</td>
<td>58</td>
<td>56</td>
<td>.317</td>
<td></td>
</tr>
<tr>
<td>Physical exercise after age 35</td>
<td>42</td>
<td>38</td>
<td>.139</td>
<td></td>
</tr>
</tbody>
</table>

* P < .01.
† P < .05.
Table 3
Conditional logistic regression models examining dementia risk by cognitive and physical activity scores in discordant twin-pairs

<table>
<thead>
<tr>
<th>Activity dimension</th>
<th>All N = 147 pairs</th>
<th>Monozygotic N = 84 pairs</th>
<th>Dizygotic N = 63 pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (CI)</td>
<td>OR (CI)</td>
<td>OR (CI)</td>
</tr>
<tr>
<td>Cognitive</td>
<td>0.74 (0.60–0.92)*</td>
<td>0.70 (0.53–0.91)*</td>
<td>0.84 (0.58–1.22)</td>
</tr>
<tr>
<td>Novel</td>
<td>0.81 (0.57–1.13)</td>
<td>0.70 (0.46–1.08)</td>
<td>1.05 (0.58–1.90)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>0.73 (0.51–1.04)</td>
<td>0.60 (0.38–0.97)*</td>
<td>0.93 (0.52–1.65)</td>
</tr>
<tr>
<td>Passive/receptive</td>
<td>0.55 (0.33–0.92)†</td>
<td>0.53 (0.25–1.09)</td>
<td>0.55 (0.26–1.15)</td>
</tr>
<tr>
<td>Physical</td>
<td>0.99 (0.73–1.33)</td>
<td>0.85 (0.56–1.29)</td>
<td>1.18 (0.75–1.85)</td>
</tr>
</tbody>
</table>

* P < .01.
† P < .05.

(N = 84) developing dementia last (OR, 0.70; CI, 0.53 to 0.91). Within cognitive activity groupings, passive/receptive activity fell below significance, and intermediate activity attained significance among MZ twin pairs (OR, 0.60; CI, 0.38 to 0.97; P < .01). Total physical activity did not predict dementia risk reduction among MZ or DZ twin pairs. When occupational factor scores of General Intellectual Demand were added as a covariate to the models, the sample size decreased to 127 pairs as a result of missing occupation data. Nevertheless, higher total cognitive activity remained associated with lower risk of dementia (OR, 0.74; CI, 0.58 to 0.94). In this model, passive/receptive activity was no longer significant (OR, 0.70; CI, 0.40 to 1.22).

APOE e4 genotype was available for 80 of the 84 MZ twin pairs. Examination of the protective association of midlife activity among MZ twin-pair carriers (1 or 2 APOE e4 alleles) and noncarriers (no APOE e4 alleles) in Table 4 showed that total cognitive activity was associated with reduced dementia risk only in APOE e4 carriers and not in noncarriers. Despite the small sample size, total cognitive activity was robustly associated with a significant 36% reduction in risk for developing dementia first among APOE e4 allele carriers (OR, 0.64; CI, 0.43 to 0.93). Within cognitive activities, this association was more significant for the subset of intermediate (OR, 0.49; CI, 0.25 to 0.95) than for novel and passive/receptive activities. This association was again restricted to cognitive activity and not physical activity. None of the interactions between APOE e4 and cognitive activities were significant (all P values > .21).

4. Discussion

In a 28-year prospective cohort study of twin pairs followed for dementia, greater midlife cognitive activity was protective against dementia onset. Protective effects were most robust in MZ twin pairs, where genetic and early-life influences were most tightly controlled. Furthermore, cognitive activity remained protective among MZ twin pairs carrying the APOE e4 allele and at elevated genetic risk for AD. When examining these associations by cognitive activity type, intermediate novel activities were most strongly associated with reduced dementia risk. These activities included home hobbies, home and family activities, club activities (eg, parties, games), and visiting with family and friends, many of which are social in nature. These activities might be indicative of an enriched and novel environment, which has been shown in animal models to enhance synaptic activity and neurogenesis and promote brain repair [37–39]. Differences in midlife physical activity did not modify risk. Overall, these findings suggest that an engaged lifestyle in midlife can modify genetic risk in men, and that various activities appear to be protective.

Numerous epidemiologic studies of activity in older adults have observed that novel intellectual or cognitively stimulating activities such as reading, playing mental games, and doing crossword puzzles were associated with reduced dementia risk [2,3,14]. These studies have sometimes included other lifestyle activities that have been described elsewhere as passive in cognitive demand [30,32]. We were surprised to observe that these passive and receptive cognitive activities, including movie and theater going and television viewing, were associated with reduced dementia risk. This finding is consistent with the use of these items by Wilson et al [3,40] in their summary measure of cognitive activity and suggests that they might serve in conjunction with other activities to enrich one’s environment and promote neuronal and synaptic efficiency [37,38].

Many of the intermediate activities (club, visiting with family, friends) and passive activities (going to movies)
were social in nature, whereas high cognitive activities surveyed here were primarily solitary (reading, studying). Our intermediate cognitive activity level largely overlaps with a recent definition of social or enterprising activity in that activities involve “manipulation of others to inform, develop, or cure” and “to attain organizational or self-interest goals” [41]. A growing body of evidence in middle-aged and older adults suggests that low social activity is associated with increased risk for AD [42], and that midlife and late-life social engagement is associated with better cognitive and physical health, even in the presence of AD pathology [43–50]. The findings presented here suggest that engaging in activities that incorporate both cognitive and social activity might confer protection, particularly among those at elevated genetic risk for AD. These findings can be integrated with other retrospective studies of midlife activity and dementia risk [51,52] in which greater participation in exchange of ideas and particularly novelty-seeking activities was associated with decreased odds of AD in late life.

The work presented here builds most directly on the first published co-twin studies of midlife activity and risk for AD, with similar period activity data (1967) among members of the Swedish Twin Registry [53,54]. They showed that midlife leisure activity [7] and greater work complexity [8] were each associated with reduced risk for AD in discordant twin-pairs, although the former finding was significant only in women. One interpretation offered by the authors for the null finding in men was that men in midlife might experience more cognitive stimulation through their occupations [55]. Recent data by this group do indeed demonstrate dementia risk reduction among the members of a twin pair with a more cognitively complex occupation [9]. Here, we observed that beyond occupational demands, midlife leisure activities incorporating voluntary and social behaviors that engage different skills and enrich social networks were protective. Collectively, these results indicate that midlife activity can influence late-life cognitive health in men, as well as women, possibly through enhancement of “cognitive” and “brain” reserves that help to buffer one against the accumulation of brain insults [55,56].

In this genetically controlled co-twin study, we did not observe a protective association between midlife physical activity and subsequent risk for AD, especially among APOE e4 carriers. The literature on physical activity and AD risk is conflicting [57]. Associations between physical activity and AD by APOE e4 status are also equivocal [47]. Although aggregate physical activity was not protective, one item surveying physical exercise after age 35 might have approached significance if rates had been higher than 42% overall (38% in affected vs nearly half of last-affected twins). As such, it remains unclear whether the lack of effect for physical activities reflects rigorous control for genetics and early life exposures, limited power, restricted measurement sensitivity, or a true null finding that mirrors conflicting findings in the broader epidemiologic literature [14–16].

These findings provide a life course perspective on dementia risk and have immediate implications for a generation of male baby boomers approaching retirement. Approximately one third of many individuals’ lives will be spent after retirement [58]. The expansion of the human life span makes it imperative to identify those lifestyle opportunities that increase health and “add life to years” [59]. These results can help inform future preventive interventions directed toward health in suggesting that modest increases in the number of cognitively stimulating activities in mid and later ages might yield substantial long-term cognitive health benefits. In particular, those activities associated with dementia risk reduction appear to encompass a range of activities that individuals are likely to maintain because they are rewarding, entertaining, and engaging. Furthermore, our findings complement those of Karp et al [50] in suggesting that activities incorporating both cognitive and social activity might confer particular cognitive health advantages over time.

In summary, use of a study design that controlled for genetic and early-life environmental influences and used prospective (midlife) versus retrospective (late life) activity assessment supports the “use it or lose it” hypothesis in aging men. Specifically, participating in a range of cognitively stimulating leisure activities in midlife might delay the onset and reduce risk of dementia in men, particularly among those at elevated genetic risk.

Acknowledgments

We would like to thank Dr William Page at the Medical Follow-up Agency of the National Academy of Sciences for generously providing questionnaire data. This work was supported by grants from the National Institute on Aging, R01 AG-08549, R01 AG19825-02, R01 AG11703-10, and P30 AG-021334-13.

References

