
Fitting the Michaelis-Menten Equation in MATLAB

Disclaimer: The goal of this example is to walk you through how to conduct a nonlinear fit in MATLAB and
compare the results between a nonlinear fit and linear fit for a given data set. Before reviewing this example
it is recommended that you read over Fitting Curves to Data using Nonlinear Regression and Conducting a
Nonlinear Fit Analysis in MATLAB so that you can be familiar with the theory and functions involved.

Example Problem

The hydrolysis of carbobenzozyglycyl-L-tryptophan catalyzed by pancreatic carboxypeptidase occurs ac-
cording to the reaction:

carbobenzozyglycyl-L-tryptophan + H2O → carbobenzoxyglycine + L-tryptophan

The following data on the rate of formation of L-tryptophan at 25◦C and pH 7.5 was obtained:

Substrate Concentration (mM) Rate (mM s−1)
2.5 0.024
5.0 0.036
10.0 0.053
15.0 0.060
20.0 0.064

a. Plot the initial rate as a function of substrate concentration. What shape does the data follow?

b. Fit a nonlinear curve to this data of the form f(x, β) = β1x
β2+x

using the nlinfit function in MATLAB.
Plot your fit and the data points on the same graph. Does the fit seem reasonable? Determine the
95% confidence intervals for β1 and β2, and find the r2 value for the fit. Are they what you expect?

c. Make a residual plot to assess the fit from part b.

d. Now linearize the model using the Lineweaver-Burk method and solve for Vmax and KM . Find the
95% confidence intervals for the slope and intercept of your Lineweaver-Burk plot and determine the
r2 value.

e. Make a residual plot to assess the fit from part d.

f. Conduct an F-test to see which model is the better fit. For help with F-tests see Fitting Curves to
Data Using Nonlinear Regression and Using the F-test to Compare Two Models.

g. Based on the above analysis, is one method preferable to the other? Compare the parameter values
found using each method and the result from the F-test.
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Example Problem Solution

It is recommended that you try the problem before looking at the solution. For an example of code that
could be used to come up with the solution see the Appendix.

a. The following figure shows the plot of the raw data. The slope appears to decrease for increasing
concentrations, eventually leveling off. This is expected for enzyme kinetics data. As substrate con-
centration increases, the rate also increases. However, the rate approaches a maximum value above
which no amount of additional substrate will influence it. This is often referred to as the saturation
point.
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b. Using MATLAB’s nlinfit command, a curve for this data can be generated. The fit function was
f(x, β) = β1x

β2+x
, where β1 was Vmax and β2 was KM . The calculated constants with 95% confidence

intervals were beta(1)=0.0859 ± (0.0074) mM/s and beta(2)=6.5619 ± (1.5235) mM. The r2 value was
0.9972. These values were calculated using the methods detailed in the Fitting Curves to Data using
Nonlinear Regression document.

The plot of the raw data with this fit is shown below. Note that the curve appears to be a good fit for
the data, passing through or near each of the data points. MATLAB has minimized the residual sum
of squares to produce this model. It iterated through values for the constants β1 and β2 until it found
values that minimized the sum of the squares of the residuals (data point minus point on curve).
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c. The residual plot for this data is shown below. To plot the residuals, plot the R value returned by
the nlinfit function as a function of the independent variable. Each value in the R vector is the data
point subtracted by the value the model estimated for each value of the independent variable. When
looking at residual plots you must search for a pattern or long runs of positive or negative values. It
is also best for the residuals to have small relative magnitudes. The plot below fits the criteria for a
good fit (i.e. no apparent pattern, small relative magnitudes as noted by the scaling on the y-axis).
However, there are only five data points so it is difficult to conclude with certainty.
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d. The data can be linearized using the equation: 1
V0

= KM

Vmax

1
[S] + 1

Vmax
. For a derivation of this equation

refer to your textbook or class notes. The plot of the linearized data, along with the linear fit, is shown
below.
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MATLAB can be used to solve for the intercept and slope. Note 95% confidence intervals are also
obtained. If you are unsure how to obtain these values please review the linear fitting tutorial.

• intercept=1/Vmax= 11.8 ± 1.42

• slope=Km/Vmax=75.43 ± 7.05

Extracting Vmax and KM gives:

• Vmax= 0.0847 mM/s

• Km=6.3923 mM

Finally, the r2 value was calculated to be r2 = 0.9976. The method used was the same as in the
nonlinear case and is discussed in the Fitting Curves to Data using Nonlinear Regression document.

e. The residual plot for the linearized data is shown below. Once again, look for patterns, long runs of
positive or negative values, or large relative magnitudes. In this case none of these trends can be seen
and the residual plot is indicative of a good fit. However, the fact there are only five data points limits
the conclusions that can be made from the residual plot alone.
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f. Conducting the F-test with the linear fit as model 1 and the nonlinear fit as model 2 gives an F-statistic
of 3.5603e+05 and a p-value of 7.9913e-09. Interpreting this result, the nonlinear fit is significantly
better than the linearized, transformed fit. This result makes sense, because transforming data tends
to exaggerate errors.

g. Based on this analysis, both methods provide good fits for the data. The nonlinear case returned 0.0859
± 0.0074 mM/s for Vmax and 6.5619 ± 0.5235 mM for KM , while the linearized method returned 0.0847
mM/s for Vmax and 6.3923 mM forKM . The values for the linearized method fall within the confidence
bounds of the nonlinear version. Additionally, both models had r2 values close to 1 and residual
plots that were indicative of good fits. Despite the apparent similarity in these results, the F-test
revealed that the nonlinear fit is statistically better than the linear fit. Linearizing the data makes
the parameters easier to calculate by hand, but if a computer is available, the nonlinear method is the
better choice.
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A MATLAB Code

1 % Assign the data vectors

2 substrate=[2.5 5 10 15 20];

3 vo=[.024 .036 .053 .06 .064];

4

5 % Plot the raw data to get a look at the shape

6 figure(1)

7 clf

8 plot(substrate,vo,’o’)

9 xlabel(’Substrate Concentration (mM)’,’FontSize’,14)

10 ylabel(’Initial rate (mM/s)’,’FontSize’,14)

11 title(’Initial Rate vs. Concentration’,’FontSize’,16)

12 print -depsc rawdataplot

13

14 % Calculate unknown coefficients in the model using nlinfit

15 model=@(b,x) b(1).*substrate./(b(2)+substrate);

16 initialguess=[1 1];

17 [beta,R,J,CovB,MSE] = nlinfit(substrate,vo,model, initialguess);

18 % 95% CI of coeffieicents

19 betaci = nlparci(beta,R,J);

20

21 % Plot the nonlinear fit with the raw data

22 figure(2)

23 plot(substrate,vo,’o’)

24 hold on

25 x=linspace(0,20,1000);

26 f=beta(1).*x./(beta(2)+x);

27 plot(x,f,’-’)

28 xlabel(’Substrate Concentration (mM)’,’FontSize’,14)

29 ylabel(’Initial rate (mM/s)’,’FontSize’,14)

30 title(’Initial Rate vs. Concentrtaion’,’FontSize’,16)

31 legend(’Data Points’,’Nonlinear Fit’,0)

32 print -depsc rawdatawithfit

33

34 % Make a residual plot

35 figure(3)

36 clf

37 plot(x,0,’-’,substrate,R,’rp’)

38 xlabel(’Substrate Concentration (mM)’,’FontSize’,14)

39 ylabel(’Residuals’,’FontSize’,14)

40 title(’Residual Plot’,’FontSize’,16)

41 print -depsc nonlinresiduals

42

43 % Compute the r^2 value

44 ssresnonlin=sum(R.^2);

45 sstotnonlin=sum((vo-mean(vo)).^2);

46 rsqrnonlin=1-(ssresnonlin/sstotnonlin);

47

48 % Plot the transformed data, it should be linear

49 figure(4)

50 clf

51 plot(1./substrate,1./vo,’o’)

52 xlabel(’1/[S] (mM^{-1})’,’FontSize’,14)

53 ylabel(’1/Vo (s/mM)’,’FontSize’,14)

54 title(’Lineweaver-Burk Plot (1/Vo vs. 1/[S])’,’FontSize’,16)
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55

56 % Set up fittype and options

57 ft = fittype( ’poly1’ );

58 opts = fitoptions( ft );

59 opts.Lower = [-Inf -Inf];

60 opts.Upper = [Inf Inf];

61

62 % Fit model to data and find 95% confidence bounds

63 [xData, yData] = prepareCurveData( 1./substrate, 1./vo );

64 [fitresult, gof] = fit( xData, yData, ft, opts );

65 p=polyfit(1./substrate,1./vo,1);

66

67 % Plot linear fit

68 x=linspace(0,.5,1000);

69 line=p(1).*x+p(2);

70 figure(4)

71 hold on

72 plot(x,line,’-’)

73 print -depsc rawlin

74

75 % Make residual plot

76 Rlin=(1./vo)-((p(1).*(1./substrate)+p(2)));

77 figure(5)

78 clf

79 plot(1./substrate,Rlin,’rp’)

80 hold on

81 plot(x,0,’-’)

82 xlabel(’1/[S] (mM^{-1})’,’FontSize’,14)

83 ylabel(’Residuals’,’FontSize’,14)

84 title(’Residual Plot’,’FontSize’,16)

85 print -depsc linres

86

87 % Determine constants from linear fit

88 Vmax=1/(p(2));

89 Km=Vmax.*p(1);

90

91 % Determine the r^2 value

92 ssreslin=sum(Rlin.^2);

93 sstotlin=sum((1./vo-mean(1./vo)).^2);

94 rsqrlin=1-(ssreslin/sstotlin);

95

96 % F-test between nonlinear and linear models

97 F=ssreslin./ssresnonlin;

98 df=length(vo)-2;

99 P=1-fcdf(F,df,df);
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