Standard Deviation

\[s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} \]

- \(s \) = sample standard deviation
- \(\bar{x} \) = sample mean
- \(\Sigma \) = summation
- \(n \) = sample size
- \(x_i \) = the \(i \)th member of the sample

Standard Error of the Mean

\[SEM = \frac{s}{\sqrt{n}} \]

- \(SEM \) = standard error of the mean
- \(s \) = sample standard deviation
- \(n \) = sample size

Propagation of Error

\[s_u = \sqrt{\left(\frac{\partial u}{\partial x} \right)^2 s_x^2 + \left(\frac{\partial u}{\partial y} \right)^2 s_y^2 + \left(\frac{\partial u}{\partial z} \right)^2 s_z^2} \]

- \(u \) = function of physical property; \(f(x, y, z, \ldots) \)
- \(s_u \) = uncertainty/standard deviation of function \(u \)

\[x = \text{measured variable} \]
\[y = \text{measured variable} \]
\[z = \text{measured variable} \]

- \(\frac{\partial u}{\partial x} \) = derivative of function \(u \) with respect to variable \(x \)
- \(\frac{\partial u}{\partial y} \) = derivative of function \(u \) with respect to variable \(y \)
- \(\frac{\partial u}{\partial z} \) = derivative of function \(u \) with respect to variable \(z \)

\[s_x = \text{uncertainty/standard deviation of variable } x \]
\[s_y = \text{uncertainty/standard deviation of variable } y \]
\[s_z = \text{uncertainty/standard deviation of variable } z \]