Product-Moment Correlation Coefficient

\[r = \frac{\sum(xy)}{\sqrt{(\sum x^2)(\sum y^2)}} \]

\(r = \) product–moment correlation coefficient
\(x = \) first set of data
\(y = \) second set of data

Population Correlation Coefficient

\[\rho = \frac{1}{N} \sum \left\{ \left[\frac{(X_i - \mu_X)}{\sigma_X} \right] \cdot \left[\frac{(Y_i - \mu_Y)}{\sigma_Y} \right] \right\} \]

\(\rho = \) population correlation coefficient
\(N = \) population size
\(X_i = \) the \(i \)th element of the first population
\(Y_i = \) the \(i \)th element of the second population
\(\mu_X = \) mean of the first population
\(\mu_Y = \) mean of the second population
\(\sigma_X = \) the standard deviation of the first population
\(\sigma_Y = \) the standard deviation of the second population

Sample Correlation Coefficient

\[r = \left[\frac{1}{(n - 1)} \right] \sum \left\{ \left(\frac{x_i - \bar{x}}{s_x} \right) \cdot \left(\frac{y_i - \bar{y}}{s_y} \right) \right\} \]

\(r = \) sample correlation coefficient
\(n = \) sample size
\(x_i = \) the \(i \)th element of the first sample
\(y_i = \) the \(i \)th element of the second sample
\(\bar{x} = \) mean of the first sample
\(\bar{y} = \) mean of the second sample
\(s_x = \) first sample's standard deviation
\(s_y = \) second sample's standard deviation

Population Regression Line

\[Y = B_0 + B_1 X \]

\(Y = \) value of the dependent variable
\(B_0 = \) a constant
Estimate of Population Regression Line

\[\hat{y} = b_0 + b_1 x \]

\(\hat{y} \) = predicted value of the dependent variable

\(b_0 \) = a constant

\(b_1 \) = regression coefficient

\(x \) = value of the independent variable

Regression Coefficient

\[b_1 = \frac{\sum[(x_i - \bar{x})(y_i - \bar{y})]}{\sum[(x_i - \bar{x})^2]} \]

\(b_1 \) = regression coefficient

\(\Sigma \) = summation

\(x_i \) = the ith element of the first sample

\(y_i \) = the ith element of the second sample

\(\bar{x} \) = mean of the first sample

\(\bar{y} \) = mean of the second sample

Constant in the Regression Equation

\[b_0 = \bar{y} - b_1 \times \bar{x} \]

\(b_0 \) = constant

\(\bar{y} \) = mean of sample y

\(b_1 \) = regression coefficient

\(\bar{x} \) = mean of sample x

Coefficient of Determination

\[R^2 = \left\{ \left(\frac{1}{N} \times \frac{\sum[(x_i - \bar{x}) \times (y_i - \bar{y})]}{\sigma_x \times \sigma_y} \right) \right\}^2 \]

\(R^2 \) = the coefficient of determination

\(N \) = population size

\(\bar{x} \) = mean of the first sample

\(\bar{y} \) = mean of the second sample

\(x_i \) = the ith element of the first sample
\[y_i = \text{the } i\text{th element of the second sample} \]

Standard Deviation of Population X

\[\sigma_x = \sqrt{\frac{\sum(x_i - \bar{x})^2}{N}} \]

\(\sigma_x = \text{the standard deviation of the first sample} \)
\(\bar{x} = \text{mean of sample } x \)
\(N = \text{population size} \)
\(x_i = \text{the } i\text{th element of the first sample} \)

Residual

\[e = y - \hat{y} \]
\(e = \text{residual} \)
\(y = \text{observed value} \)
\(\hat{y} = \text{predicted value} \)

Exponential Model

\[\log(y) = b_0 + b_1 x \]
\(\log = \text{log base } 10 \)
\(y = \text{dependent variable} \)
\(b_0 = \text{constant} \)
\(b_1 = \text{regression coefficient} \)
\(x = \text{independent variable} \)

Quadratic Model

\[\sqrt{y} = b_0 + b_1 x \]
\(y = \text{dependent variable} \)
\(b_0 = \text{constant} \)
\(b_1 = \text{regression coefficient} \)
\(x = \text{independent variable} \)

Reciprocal Model

\[\frac{1}{y} = b_0 + b_1 x \]
\(y = \text{dependent variable} \)
Logarithmic Model

\[y = b_0 + b_1 \log(x) \]

\(b_0, b_1 \) = regression coefficients
\(x \) = independent variable
\(\log \) = log base 10
\(y \) = dependent variable

Power Model

\[\log(y) = b_0 + b_1 \log(x) \]

\(b_0, b_1 \) = regression coefficients
\(x \) = independent variable
\(\log \) = log base 10
\(y \) = dependent variable

\[SE = s_{b1} = \sqrt{\frac{\sum(y_i - \hat{y}_i)^2}{n-2}} \]

\(SE \) = standard error
\(s_{b1} \) = standard deviation of \(b1 \)
\(\bar{x} \) = mean of sample \(x \)
\(\hat{y} \) = predicted value
\(x_i \) = the \(i \)th element of the first sample
\(y_i \) = the \(i \)th element of the second sample

Standard Error

\[t = \frac{b_1}{SE} \]

\(b_1 \) = regression coefficient
\(SE \) = standard error
\[t = \text{test statistic for } t \text{ norms} \]

Degrees of Freedom (Linear Regression)

\[DF = n - 2 \]

\(DF = \text{degrees of freedom,} \quad n = \text{sample size} \)