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Thus, when notochord vacuoles are absent or fragmented 
the body axis is shorter but straight, with normal body curvature. 
We conclude that notochord vacuoles are required for elonga-
tion of the embryonic body axis but not straightening.

Notochord vacuoles are necessary for 
proper spine morphogenesis
Work in various animal models has shown that notochord 
cells, including vacuolated cells, become part of the nucleus 
pulposus within the intervertebral discs as the notochord is 

mosaic approach. As shown above, in notochord cells express-
ing DN GFP-Rab32a, vacuoles were fragmented (Fig. 7 K). 
Fish expressing DN GFP-Rab32a in a mosaic fashion were 
on average 8% shorter than their WT siblings (P < 0.0001 
at all time points; n = 73 for DN Rab32a; n = 84 for WT at  
5 dpf; Fig. 7 L). As a control, larvae expressing DN mCherry-
Rab11a in the notochord showed no vacuole formation defect 
and were not significantly shorter than their siblings (Fig. 7, 
M–O). The same was also seen with DN mCherry-Rab7a 
(unpublished data).

Figure 7.  Notochord vacuoles are required for elongation of the embryonic axis. (A) Whole-mount image of 5-dpf WT larva expressing NICD in the 
notochord (Tg(rcn3:gal4); Tg(UAS:myc-Notch1a-intra)). (B) Live DIC images of notochords in 48-hpf WT and NICD-expressing larvae. (C) Body length 
in millimeters from 1 to 5 dpf. P < 0.0001 at all time points; n = 16 in NICD; n = 37 for WT at 5 dpf. (D) Whole-mount image of 5-dpf WT and DN 
mCherry-Rab5–expressing larvae from the early rcn3 promoter (Tg(rcn3:gal4); Tg(UAS:mCherry-rab5c-S34N)). (E) Live DIC image of 24 hpf WT and DN 
mCherry-Rab5 notochords. (F) Body length in millimeters from 1 to 5 dpf. P < 0.0001 at all time points; n = 48 for Rab5cDN; n = 84 for WT at 5 dpf.  
(G) Whole-mount image of 5 dpf WT and DN mCherry-Rab5–expressing larvae from the late SAG214 driver (Gt(SAGFF214A:gal4); Tg(UAS:mCherry-
rab5c-S34N)). (H) Live DIC image of 48-hpf WT and rab5cDN notochords. (I) Body length in millimeters from 1 to 5 dpf. No significant difference; n = 46  
for Rab5cDN; n = 49 for WT at 5 dpf. (J) Whole-mount image of 5-dpf transgenic Tg(rcn3:gal4) larvae injected with UAS:GFP-rab32a-T27N DNA for 
mosaic expression. WT is nonexpressing, injected sibling. (K) Live DIC image of 24-hpf WT and DN GFP-Rab32a notochords. Arrow indicates expressing 
cell with fragmented vacuoles. (L) Body length in millimeters from 1 to 5 dpf. P < 0.0001 at all time points; n = 73 for Rab32aDN; n = 84 for WT at 5 dpf. 
(M) Whole-mount image of 5-dpf WT and DN mCherry-Rab11a larvae (Tg(rcn3:gal4); Tg(UAS:mCherry-rab11a-S25N)). (N) Live DIC image of 24-hpf WT 
and DN mCherry-Rab11a notochords. (O) Body length in millimeters from 1 to 5 dpf. No significant difference; n = 54 for Rab11aDN; n = 48 for WT at 
5 dpf. Bars: (A, D, G, J, and M) 1 mm; (B, E, H, K, and N) 50 µm. (C, F, I, L, and O) Error bars equal SEM.
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and die because they are unable to feed, and therefore could 
not be analyzed for spine morphogenesis.

To more specifically determine the role of the vacuole in 
spine morphogenesis, we analyzed fish expressing DN GFP-
Rab32a mosaically. rcn3:gal4 embryos injected with UAS:
GFP-rab32a-T27N DNA were raised until 21 dpf and then their 
spines were visualized with the vital dye calcein. These fish also 
showed body and spine kinks, although less than fish expressing 
DN mCherry-Rab5c throughout the notochord (Fig. 8, G and H).  
Juveniles that expressed DN mCherry-Rab11a, which does 
not affect the vacuole, showed no body kinks or spine defects 
(Fig. 8, I and J), indicating that not all DN rabs affect spine 
formation. These data indentify a novel role for the notochord 
vacuoles in spine morphogenesis.

replaced by the spine (Walmsley, 1953). We next investi-
gated the role of notochord vacuoles in spine morphogenesis 
in young juvenile fish. Short larvae without notochord vacu-
oles were raised for 21 dpf, after which spine morphology 
was analyzed using the vital dye calcein (Du et al., 2001). In 
juveniles (21 dpf) that expressed DN mCherry-Rab5c before 
vacuole differentiation, using the rcn3 promoter, the body 
axis appeared straight from a lateral view. In contrast, it was 
dysmorphic when viewed dorsally (Fig. 8 C). Live imaging 
with calcein revealed that the spine was severely kinked and  
wavy with mature and fully formed vertebrae (Fig. 8 D). 
In contrast, juveniles that expressed DN mCherry-Rab5c after  
differentiation had normal spines (Fig. 8, E and F). Fish express
ing NICD in the notochord fail to inflate their swim bladders 

Figure 8.  Notochord vacuoles are necessary 
for proper spine formation. (A and A’) Whole-
mount image of a 21-dpf WT fish (lateral 
and dorsal views). (B) Live image of calcein-
stained 21-dpf WT spine. (C and C’) Whole-
mount image of a 21-dpf DN-mCherry-Rab5c 
transgenic fish using the early driver rcn3; 
Tg(rcn3:gal4); Tg(UAS:mCherry-rab5c-S34N) 
(lateral and dorsal views). Arrows show body 
kinks. (D) Live image of calcein-stained 21-dpf 
spine of a DN mCherry-Rab5c transgenic fish. 
(E and E’) Whole-mount image of a 21-dpf 
DN mCherry-Rab5 transgenic fish using the  
later driver SAG214A; Gt(SAGFF214A:gal4); 
Tg(UAS:mCherry-rab5c-S34N) (lateral and  
dorsal views). (F) Live image of calcein-stained 
spine of a 21-dpf DN mCherry-Rab5 trans-
genic fish. (G and G’) Whole-mount image of  
a 21-dpf mosaic DN GFP-Rab32a fish; Tg(rcn3:
gal4) embryos injected with UAS:GFP-rab32a-
T27N DNA. Lateral and dorsal views are 
shown; arrows show body kinks. (H) Live image  
of calcein-stained spine of a 21-dpf DN GFP-
Rab32a–expressing fish. (I and I’) Whole-
mount image of a 22-dpf transgenic DN 
mCherry-Rab11a fish (Tg(rcn3:gal4); Tg(UAS:
mCherry-rab11a-S25N); lateral and dorsal  
views). (J) Live image of calcein-stained spine 
of a 22-dpf DN mCherry-Rab11a transgenic 
fish. Bars: (A, C, E, G, and I) 1 mm; (B, D, F, 
H, and J) 200 µm.
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presence of basic amino acids in the vacuole or, more likely, by 
the activity of alkali/H+ exchangers on the vacuole membrane 
(Casey et al., 2010). Transport of alkali ions into the vacuole  
lumen would then drive the movement of water, thereby leading  
to the swelling of the organelle. In this scenario vacuole integrity 
should be dependent on the activity of the H+-ATPase. To test 
this hypothesis further, we treated dissected notochords from 
20 ss embryos with bafilomycin. In agreement with our work-
ing model, confocal imaging revealed that after 2 h of incuba-
tion with bafilomycin, vacuoles begin to fragment (Fig. S3 C).  
Future work should identify the ion exchangers on the vacuole 
membrane and the osmolytes that drive the accumulation of a 
large volume of water within notochord vacuoles.

Traditionally, it has been assumed that notochord vacu-
oles contain glycosaminoglycans (GAGs) and that these highly 
negatively charged molecules may drive vacuole expansion by 
attracting cations and water (Waddington and Perry, 1962). To 
determine if GAGs are present in zebrafish notochord vacuoles 
we generated a secreted GFP that contains a short sequence  
tag of 10 amino acids (EDEASGIGPE) that is a known GAG  
attachment site in the proteoglycan decorin (Kobialka et al., 
2009). The GAG-tagged GFP (GAG-GFP) was modified and 
secreted from cells in vitro (Fig. S4 A). In 24-hpf embryos ex-
pressing secreted GAG-GFP under the control of the rcn3 pro-
moter, no GAG-GFP was detected in the vacuole lumen, 
suggesting that GAGs are not trafficked to the vacuole at this 
stage (Fig. S4 B). We also checked for the presence of GAGs 
using immunohistochemistry. Anti-keratan sulfate antibodies 
labeled the perinotochordal basement membrane as well as the 
space between the outer sheath layer and inner cell layer but not 
the lumen of the vacuole (Fig. S4 C). Next, we stained embryos 
with the basic dye Alcian blue, which labels acidic polysaccha-
rides and mucopolysaccharides, and did not detect any labeling 
inside the vacuoles (Fig. S4, D and E), suggesting that GAGs 
are not likely to function as osmolytes within the zebrafish  
notochord vacuole during embryogenesis.

For many years the vertebrate notochord has been consid-
ered an evolutionary relic that only functions in early embry-
onic development and degenerates shortly thereafter. However, 
recent work in several vertebrate species has clearly shown that 
notochord cells persist within the nucleus pulposus of the inter-
vertebral discs (Hunter et al., 2004). This work establishes a 
continuous structural role for the notochord from embryogene-
sis until vertebral column formation.

Materials and methods
Fish stocks
Zebrafish stocks were maintained at 28°C and bred as previously de-
scribed (Westerfield, 2000). A list of zebrafish lines used for this work 
can be found in Table 1. The Gt(Gal4FF)nksagff214a line was a gift from  
K. Kawakami (National Institute of Genetics, Mishima, Japan). The Tg(UAS:
mCherry-rab5c-S34N), Tg(UAS:mCherry-rab7a-T22N), and Tg(UAS: 
mCherry-rab11a-S25N) lines were gifts from B. Link (Medical College  
of Wisconsin, Milwaukee, WI). The vps11wsu1/wsu1 line was a gift from  
R. Thummel (Wayne State University School of Medicine, Detroit, MI). The  
atp6v1e1bhi577aTg/hi577aTg, atp6v1fhi1988Tg/hi1988Tg, and atp6v0cahi1207Tg/hi1207Tg 
lines were gifts from J. Gross (University of Texas at Austin, Austin, TX). The 
Tg(UAS-E1b:6xMYC-notch1a) line was a gift from S. Kucenas (University 
of Virginia, Charlottesville, VA).

Discussion

Here we elucidate the trafficking requirements necessary 
for vacuole biogenesis and show that post-Golgi trafficking,  
H+-ATPase-dependent acidification, and Rab32a function are 
necessary for formation and maintenance of this specialized 
structure. Our in vivo studies in zebrafish show that the inflating 
vacuoles act as a morphogenetic force to elongate the embry-
onic body axis. Previous ex vivo work had suggested that vacu-
ole inflation could drive both the elongation and straightening 
of the body axis (Koehl et al., 2000). However, our results show 
that in vivo vacuole inflation is not required for straightening 
of the embryonic axis. The expansion of the vacuoles results 
in the elongation of the embryonic axis longitudinally and not 
radially, as a result of the rigid ECM surrounding the notochord 
(Adams et al., 1990; Stemple et al., 1996).

Characterization of the cellular machinery regulating no-
tochord vacuole biogenesis and maintenance uncovered a role 
for vacuoles in spine morphogenesis. How do vacuoles affect 
this process? The link between the notochord and vertebral 
development has been closely examined in Atlantic salmon 
(Grotmol et al., 2003). There, the ossification of the initial spine 
structure, the chordacentra, begins within the perinotochordal 
ECM. Then, mesenchymal cells from the sclerotome invade 
the notochord and, using the forming chordacentra as a founda-
tion, differentiate into osteoblasts that eventually form the bone 
matrix of the vertebrae. We hypothesize that the fully inflated 
vacuoles provide the rigidity necessary to oppose the pushing 
force of invading osteoblasts during vertebral bone formation. 
Notochords lacking vacuoles or with fragmented vacuoles are 
unable to resist these invasive forces, causing kinks in the spine 
during ossification. Future work will further characterize the 
role of the vacuole in ossification of the vertebral column.

Recent work in the mouse has implicated notch signaling 
and hypoxia in scoliosis of the spine by affecting somite pat-
terning through the segmentation clock, thereby affecting spine 
morphogenesis (Sparrow et al., 2012). However, it is very likely 
that under those conditions differentiation of the notochord 
vacuolated cells is also affected and contributes to the overall 
scoliosis phenotype. The experimental accessibility of the zebraf-
ish notochord will help better understand the link between noto-
chord function and spine morphogenesis shown here.

Many specialized cells contain LROs that are similar to 
late endosomes or lysosomes and carry out specific functions 
(Dell’Angelica et al., 2000; Raposo et al., 2007). We propose 
that the notochord vacuole is a LRO that functions as the main 
structural component of the notochord. The notochord vacu-
ole, like previously characterized LROs, is a highly specialized 
post-Golgi structure that requires acidification for its forma-
tion, uses the LRO Rab32a, and contains at least one lysosomal 
membrane protein. However, unlike some LROs, the lumen of 
the notochord vacuole is not acidic. LysoTracker labeled lyso-
somes and other internal structures, but not the vacuole lumen 
in dissected notochords (Fig. S3, A–B). Nevertheless, vacuoles 
require acidification for their biogenesis and maintenance. We 
reasoned that the pH gradient generated by the H+-ATPase may 
be rapidly dissipated in the vacuole. This could be caused by the 
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and 20×/0.8 Plan-Apochromat objective, an AxioCamMRm camera, and 
AxioVision software (all from Carl Zeiss). Whole-mount live imaging for 
body length measurements and before calcein dye was performed on a 
Setero Discovery.V20 microscope with 1.0× Achromat S FWD 63 mm ob-
jective, an AxioCamHRc camera, and AxioVision software (all from Carl 
Zeiss). Where necessary, images were minimally post-processed in ImageJ 
software (National Institutes of Health) for overall brightness and contrast 
or to realign channels to correct for drift that occurs during live imaging.

Immunohistochemistry
For cross sections, zebrafish embryos were anesthetized in tricaine solu-
tion (Sigma-Aldrich), fixed in 4% PFA overnight, washed several times in 
PBS, embedded in 4% low melt agarose (GeneMate), and sectioned using 
a vibratome (VT 1000S; Leica) as previously described (Bagnat et al., 
2010). Alexa-568 phalloidin (Invitrogen) was used at 1:500 and sections 
were mounted on glass slides with Vectashield mounting media containing 
DAPI (Vector Laboratories). A mouse monoclonal antibody against kera-
tan sulfate (Developmental Studies Hybridoma Bank) was used at 1:100 
and detected with Alexa Fluor 488 goat anti–mouse antibody (Molecular 
Probes) at 1:300.

Pharmacological treatments
BFA (Sigma-Aldrich) was prepared as a 20-mg/ml stock solution in DMSO 
and used at 5 µg/ml in egg water. Bafilomycin (Sigma-Aldrich) was pre-
pared as a 2-mM stock solution in DMSO and used on fish at 500 nM in 
egg water and on dissected notochords at 1 µM in L-15 culture media.

Live imaging
The vital dye GFP Counterstain BODIPY TR MED (Molecular Probes) was 
used for most live imaging. In brief, embryos were soaked in 2% MED for 
30 min to 1 h depending on age, rinsed in egg water, mounted on a glass 
slide in egg water, and imaged immediately. Spines were labeled with the 
vital dye calcein (Sigma-Aldrich). Fish were incubated in a solution of 0.2% 
calcein in water for 10 min as previously described (Du et al., 2001), 
rinsed in fish water, and allowed to rest for 10 min at room temp before 
mounting in fish water on a slide for imaging. All live imaging was per-
formed at room temperature.

Heat shock
Embryos in egg water were transferred to 50-ml conical tubes and sub-
merged in a 39°C water bath for 30 min to induce hsp70l expression.

Dissected notochord assays
Notochords were dissected from fish by incubating embryos in 0.25% 
trypsin (Gibco) for 5–20 min depending on age. The cell suspension was 

Plasmid construction
All constructs for transgenic fish were generated using the Tol2kit gateway 
cloning system using the p5E-MCS, p5E-hsp70l, pME-MCS, pME-EGFP-
CaaX, p3E-polyA, pDestTol2pA2, and pDestTol2CG2 vectors (Kwan et al., 
2007). The p5E-4xUAS vector was a gift from M. Goll (Memorial Sloan- 
Kettering Cancer Center, New York, NY; Akitake et al., 2011). The 1-kb rcn3 
promoter fragment was amplified from genomic DNA using primers with 
KpnI and HindIII restriction sites: rcn3_KpnI_forward, 5-GGTACCAACAT-
GACCACGTCAGACCA-3; and rcn3_HindIII_reverse, 5-AAGCTTAAGT-
GTCCCCAGAAAGAGCA-3. pME-Dyn1-K44A-GFP was generated from 
Addgene plasmid 22197, pEGFP-N1-human dynamin1aa-K44A (Lee and 
De Camilli, 2002). pME-Dyn2-K44A-GFP was generated from pEGFP- 
NI-rat dynamin2aa-K44A (Cook et al., 1994). Rab7b (available from RefSeq 
under accession no. NM_001002178) was amplified from cDNA using 
primers with BamHI and NotI restriction sites: rab7b_BamHI_forward,  
5-GGATCCATGGCTTCCCGTAAAAAGGTCCTCC-3; rab7b_NotI_reverse, 
5-GCGGCCGCTCAGCAGCTGCAGCCTTCACCGTTA-3. Rab38b was 
amplified from cDNA using primers with BamHI and NotI restriction sites: 
rab38b_BamHI_forward, 5-GGATCCATGCATAACAATCAGAAGGAG-
CATTTGTAT-3; and rab38b_NotI_reverse, 5-GCGGCCGCTCAAGGTTT-
GAAGCAAGCGGAACAAGT-3. Rab32a was amplified from cDNA using  
primers with BglII and NotI restriction sites: rab32a_BglII_forward, 5-AG-
ATCTATGGCAGGCGGGTCCGTGTCGG-3; and rab32a_NotI_reverse,  
5-GCGGCCGCCTAGCAGCAACCTGACTTGCTCTC-3. DN Rab7b, Rab32a,  
and Rab38b were made using QuikChange II XL site-directed mutagenesis 
kit (Agilent Technologies). Lamp2 was amplified from cDNA using primers 
with EcoRI and BamHI restriction sites: lamp2_EcoRI_forward, 5-GAATTCAT-
GGCTGTCCGCGGTTTTCTGCCTC-3; and lamp2_BamHI_reverse, 5-GGA
TCCCAGTGTCTGATATCCAACATAGGTTCGTCG-3. pME-Lamp1-RFP was 
generated from rat Lamp1-RFP (Sherer et al., 2003).

Microscopy
Time-lapse imaging of notochord development, whole-mount live imaging, 
and fixed section imaging were performed on a confocal microscope (SP5; 
Leica) with 10×/0.40 HC PL APO air objective, 20×/0.70 HC PL APO 
oil objective, and 40×/1.25–0.75 HCX PL APO oil objective (all from 
Leica) and Application Suite software (Leica). Whole-mount live imaging 
was also performed on a 780 inverted confocal microscope (Carl Zeiss) 
with 20×/0.8 Dry Plan-Apochromat DIC objective and 40×/1.4 Oil Plan-
Apochromat objective (all from Carl Zeiss) and Zen software. Dissected 
notochord cells were imaged using a 710 inverted confocal microscope 
(Carl Zeiss) with 63×/1.40 Oil Plan-Apochromat objective (Carl Zeiss) 
and Zen software. Whole-mount live imaging was also performed on an 
Axio Imager.M1 microscope with 10×/0.3 EC Plan-NeoFluar objective 

Table 1.  Transgenic lines used in this paper

Allele Genotype Reference

pd1023 Tg(rcn3:gal4) This work
pd1025 Tg(UAS:GFP-CaaX) This work
pd1009 Tg(rcn3:GFP-CaaX) This work
nksagff214a Gt(Gal4FF)nksagff214a Yamamoto et al., 2010
hi2462Tg cltcahi2462Tg/hi2462Tg Amsterdam et al., 2004
mw33 Tg(UAS:mCherry-rab5c-S34N) Clark et al., 2011
wsu1 vps11wsu1/wsu1 Thomas et al., 2011
hi2499aTg vps18hi2499aTg/hi2499aTg Sadler et al., 2005
mw37 Tg(UAS:mCherry-rab7a-T22N) Clark et al., 2011
pd1081 Tg(UAS:GFP-rab38b-T23N, cmlc2:GFP) This work
hi577aTg atp6v1e1bhi577aTg/hi577aTg Nuckels et al., 2009
hi1988Tg atp6v1fhi1988Tg/hi1988Tg Nuckels et al., 2009
hi1207Tg atp6v0cahi1207Tg/hi1207Tg Nuckels et al., 2009
pd1082 Tg(hsp:lamp2-GFP) This work
pd1064 Tg(hsp:Lamp1-RFP) This work
pd1083 Tg(UAS:GFP-rab32a, cmlc2:GFP) This work
kca3 Tg(UAS-E1b:6xMYC-notch1a) Scheer and Campos-Ortega, 1999
mw35 Tg(UAS:mCherry-rab11a-S25N) Clark et al., 2011
pd1065 Tg(hsp:RFP-LC3) This work
pd1066 Tg(UAS:s-GFP, cmlc2:GFP) This work
pd1067 Tg(UAS:s-GFP-GAG, cmlc2:GFP) This work
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comparison. J. Anat. 205:357–362. http://dx.doi.org/10.1111/j.0021-
8782.2004.00352.x

Hunter, C.J., S. Bianchi, P. Cheng, and K. Muldrew. 2007. Osmoregulatory 
function of large vacuoles found in notochordal cells of the intervertebral 
disc. Mol. Cell. Biomech. 4:227–237.

Kida, Y.S., T. Sato, K.Y. Miyasaka, A. Suto, and T. Ogura. 2007. Daam1 reg-
ulates the endocytosis of EphB during the convergent extension of the 

passed through a 70-µm cell strainer, and the contents retained in strainer 
were cultured in L-15 media without phenol red (Gibco) containing 10%  
fetal bovine serum. For endocytosis assays, FM4-64 dye (Molecular Probes) 
was prepared as a 4-mM stock solution in water and was cocultured with 
notochord cells at a final concentration of 4 µM. Dextran Alexa Fluor 568 
10,000 MW (Molecular Probes) was prepared as a 5-mg/ml stock and 
cocultured with notochord cells at a final concentration of 100 µg/ml. Lyso-
Tracker red DND-99 (Molecular Probes) comes as a 1-mM stock solution in 
DMSO and was cocultured with notochord cells at a final concentration of 
1 µM. Notochord cells were imaged in L-15 culture media without phenol 
red containing 10% fetal bovine serum in 35-mm glass bottom microwell 
dishes at room temperature.

Body length measurements
Fish were mounted in 2% methylcellulose for whole-mount imaging and 
then recovered. Body length was measured from the tip of the nose to the 
tip of the tail using ImageJ software.

Western blot
HEK293AD cells were transfected with pcDNA3-s-RFP or pcDNA3-s-GFP-
GAG using Lipofectamine 2000 (Invitrogen). Cells were allowed to secrete 
into media for 3 d and then supernatants were collected. Samples were 
spun for 5 min at 1,500 to pellet any cellular debris and the superna-
tant was removed. Laemmli sample buffer was added to supernatant and 
cells and boiled for 5 min, and samples were loaded into SDS-PAGE gels. 
Secreted RFP was detected with rabbit polyclonal anti-DS red antibody  
(Takara Bio Inc.) at 1:1,000 and secreted GFP-GAG was detected with 
rabbit polyclonal anti-GFP antibody (AnaSpec).

Alcian blue
GAGs were labeled with Alcian blue as previously described (Neuhauss  
et al., 1996). In brief, embryos were fixed in 4% PFA overnight and 
washed several times in PBS. Embryos were bleached in 30% hydrogen 
peroxide until the eyes were translucent. Embryos were rinsed in PBS and 
transferred to Alcian blue solution overnight (70% EtOH, 1% HCl, and 
0.1% Alcian blue). Embryos were cleared in acidic ethanol (70% EtOH 
and 5% HCl) until clear.

Online supplemental material
Fig. S1 illustrates that the promoter rcn3 turns on at 6 ss in transgenic em-
bryos expressing GFP-CaaX. Fig. S2 shows that GFP secreted from cells in 
vitro and in vivo does not accumulate in the notochord vacuoles. Fig. S3 
shows that LysoTracker red does not accumulate in the vacuole in dissected 
notochord cells and that bafilomycin causes the vacuole to fragment in dis-
sected notochord cells. Fig. S4 shows that a GAG-tagged GFP secreted 
from cells in vitro and in vivo is not trafficking to the notochord vacuoles.  
A keratan sulfate antibody and Alcian blue staining confirm that there are 
no GAGs in the lumen of the vacuoles. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.201212095/DC1. 
Additional data are available in the JCB DataViewer at http://dx.doi.org/ 
10.1083/jcb.201212095.dv.
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