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a b s t r a c t

The development and function of many internal organs requires precisely regulated fluid secretion. A
key regulator of vertebrate fluid secretion is an anion channel, the cystic fibrosis transmembrane
conductance regulator (CFTR). Loss of CFTR function leads to defects in fluid transport and cystic fibrosis
(CF), a complex disease characterized by a loss of fluid secretion and mucus buildup in many organs
including the lungs, liver, and pancreas. Several animal models including mouse, ferret and pig have
been generated to investigate the pathophysiology of CF. However, these models have limited
accessibility to early processes in the development of CF and are not amenable for forward genetic or
chemical screens. Here, we show that Cftr is expressed and localized to the apical membrane of the
zebrafish pancreatic duct and that loss of cftr function leads to destruction of the exocrine pancreas and a
cystic fibrosis phenotype that mirrors human disease. Our analyses reveal that the cftr mutant pancreas
initially develops normally, then rapidly loses pancreatic tissue during larval life, reflecting pancreatic
disease in CF. Altogether, we demonstrate that the cftr mutant zebrafish is a powerful new model for
pancreatitis and pancreatic destruction in CF. This accessible model will allow more detailed investiga-
tion into the mechanisms that drive CF of the pancreas and facilitate development of new therapies to
treat the disease.

& 2015 Elsevier Inc. All rights reserved.

Introduction

Fluid secretion is a key developmental process, required for the
morphogenesis and function of many organs (Cartwright et al.,
2009). During lumen formation, fluid secretion drives lumen
coalescence and expansion in several organs including the gut,
brain, and kidney (Bagnat et al., 2007; Kramer-Zucker et al., 2005;
Lowery and Sive, 2005; Nedvetsky et al., 2014). One of the key
regulators of fluid secretion in several organs is the anion channel
cystic fibrosis transmembrane conductance regulator (CFTR)
(Bagnat et al., 2010; Navis et al., 2013; Nedvetsky et al., 2014). Loss
of CFTR activity leads to CF, a multi-organ disease caused by defects
in ion and fluid transport (Riordan et al., 1989). Mutations in CFTR
can disrupt anion transport, leading to loss of chloride and/or
bicarbonate transport necessary for regulating osmotic gradients
that drive fluid secretion (Anderson et al., 1991; Barrett and Keely,
2000). Loss of CFTR activity in epithelia lining the tubular systems
of affected organs allows mucus to accumulate within the lumen,
blocking ducts and disrupting organ function (Durie and Forstner,
1989; Gaskin et al., 1988; Matsui et al., 1998). In the airways, mucus

becomes compacted allowing invasion by opportunistic bacteria
and leading to decline in lung function (Matsui et al., 1998). The
thick mucus buildup characteristic of CF may be due to the loss of
bicarbonate transport necessary for mucus expansion and fluidity
(Quinton, 2008).

The pathology of CF was initially described as cystic fibrosis of the
pancreas (Andersen, 1938). Loss of CFTR function in the pancreas leads
to blockage of the pancreatic ducts with mucus and widespread
destruction of acinar tissue, which is replaced by fibrotic tissue over
time (Wilschanski and Novak, 2013). In most CF patients obstruction of
the ductal system and destruction of the acinar tissue lead to pancreatic
insufficiency (PI), characterized by impaired delivery of digestive
enzymes to the intestine (DiMagno et al., 1973). Although the pathol-
ogy of pancreatic disease in CF has been well characterized, the
mechanisms leading to pancreatic destruction are less well understood.

Infant and fetal CF patients have high levels of circulating
immunoreactive trypsinogen (Crossley et al., 1979), which is also a
marker of pancreatitis in adults (Kemppainen et al., 1997). Further,
pancreatic sufficient (PS) CF patients are susceptible to pancreatitis
(Durno et al., 2002) and people carrying one defective CFTR allele
have increased risk of developing chronic pancreatitis (Cohn et al.,
1998; Sharer et al., 1998). Additionally, increased inflammatory cells,
including neutrophils and macrophages, have been observed in the
CF pancreas in humans and animal models (Andersen, 1938;
Meyerholz et al., 2010; Olivier et al., 2012), however the mechanisms
leading to widespread pancreatic destruction in CF remain poorly
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understood. The prevailing view of pancreatitis onset is that ductal
blockage leads to activation of digestive enzymes within the acinar
tissue, leading to auto-digestion, then inflammation and recruitment
of the innate immune system (Lerch and Gorelick, 2013; Whitcomb,
2004). However, a recent study has challenged this model of disease
onset and suggested that inflammation driven by neutrophils is a
major driver of zymogen activation and auto-digestion of acinar
tissue (Sendler et al., 2013). Identifying the precise sequence of
events leading to pancreatic disease in CF patients will be essential
to better understand the pathophysiology of CF.

To investigate the pathophysiology of CF several animal models
have been developed including the mouse, pig, and ferret (Dorin et
al., 1992; Rogers et al., 2008; Snouwaert et al., 1992; Sun et al., 2010).
Mouse models develop intestinal obstruction similar to CF patients
(Hodges et al., 2011), but fail to develop spontaneous lung disease
and present only mild disease in the pancreas, which can take many
months to become apparent (Durie et al., 2004), likely due to
compensatory calcium activated chloride channels (Rock et al.,
2009; Snouwaert et al., 1992).

To address the lack of lung disease in the mouse model, ferret
and pig models of CF were generated by disrupting CFTR in these
systems (Rogers et al., 2008; Sun et al., 2008). The pig and ferret
models develop the pathophysiology characteristic of CF in many
organs including lung dysfunction and severe pancreatic destruc-
tion (Rogers et al., 2008; Sun et al., 2010). Although these models
have led to new insights into the pathophysiology of CF, the limited
accessibility of developmental stages, high animal husbandry costs,
and the impracticality of genetic analyses in these systems hinders
their widespread use. To better understand disease onset and to
develop new treatments for CF, it will be essential to develop a
more accessible model of CF that reflects the severity of human
disease. The zebrafish is a powerful genetic model system, which
has been used to model several human diseases (Phillips and
Westerfield, 2014). Zebrafish Cftr is similar to human CFTR and is
responsive to many of the same pharmacological activators and
inhibitors of human CFTR activity (Bagnat et al., 2010). Previously,
we showed that cftr is necessary for fluid secretion and lumen
expansion of Kupffer’s vesicle, an organ controlling laterality during
early zebrafish development, highlighting the role of cftr during the
regulation of fluid secretion in the zebrafish (Navis et al., 2013).
Since cftr regulates fluid secretion early in development, we
hypothesized that cftr may also be essential for organogenesis and
organ function later in life, similar to mammalian CFTR.

Here, we describe a zebrafish model of pancreatic disease in CF.
We found that Cftr is expressed in the pancreatic duct and
localized to the apical membrane throughout the life, similar to
mammalian expression. We further examined the role of cftr in the
pancreas, finding that exocrine pancreatic destruction develops
rapidly at around two weeks post fertilization. Importantly, we
found that the cftr mutant zebrafish develops pancreatic destruc-
tion similar to CF of the human pancreas.

Materials and methods

Fish stocks

Zebrafish were maintained at 28 1C and propagated as previously
described (Westerfield, 2000). The cftrpd1049 mutant line was main-
tained in the AB background (Navis et al., 2013). Homozygous
cftrpd1049 mutant fish were identified by sorting zebrafish at 10–12
somite stage for loss of Kupffer’s vesicle lumen inflation (Navis et al.,
2013). After fertilization, the fish were raised at 24 1C overnight to
better schedule the optimal sorting period. Once sorted, the zebrafish
were maintained at 28 1C. Zebrafish care and maintenance was
performed in accordance with the Duke Institutional Animal Care

and Use Committee. The following transgenic zebrafish lines were
used in this study: EK, AB, TgBAC(cftr-GFP)pd1041, TgBAC(cftr-RFP)
pd1042, Tg(ptf1a:GFP)jh1 (Godinho et al., 2005), TgBAC(ptf1a:Gal4)
jh16 (Parsons et al., 2009), TgBAC(cftr:Gal4)pd1101 (this study), Tg
(UAS:GFP)zf82 (Asakawa et al., 2008), Tg(UAS:mCherry), Tg(ela:GFP,
lfabp:dsRed)gz12 (Farooq et al., 2008), Tg(lysC:dsRed)nz50 (Hall et al.,
2007) and Tg(ins:dsRed)m1018 (from W. Driever, Freiburg, Germany).

In situ hybridization

In situ hybridization was performed as previously described
with slight modifications (Navis et al., 2013; Snelson et al., 2008).
Briefly, AB zebrafish were fixed in 4% paraformaldehyde overnight.
Fixed fish at 3 and 5 dpf were treated with 10 mg/ml Proteinase K
(Sigma, St. Louis, MO, USA) for 20 min prior to hybridization. After
staining, the fish were dehydrated in a glycerol series to clear and
imaged on a Discovery V20 stereoscope (Zeiss) in 100% glycerol.

BAC recombineering

Bacterial artificial chromosome (BAC) recombineering was used to
generate the TgBAC(cftr:Gal4)pd1101 line using the SW105 cell line
with slight modifications to a previously described protocol (Warming
et al., 2005). A selection cassette containing Gal4-VP16 followed by an
FRT flanked Kanamycin resistance gene was assembled in pBluescript.
The SW105 cells were transformed with the cftr BAC. The Gal4 FRT-
Kan-FRT cassette was then amplified using primers containing 50 bp
of homology to the sequences flanking the cftr start codon: cftr-gal4-F,
GATACCCGTAACCCGATGTGAGCGCTTTCACCCCCGGGGTACTTTTTAGGA-
TGAAGCTACTGTCTTCTAT and cftr-gal4-R, CAAAAGAAGTATCTGGA-
GAGGCAGTTGGCATCCTCCACAGGTGATCTCTGCAGTGTGATGGATATCT-
GCAG. SW105 cells containing the cftr BAC were induced by heatshock
then transformed with this PCR product and selected using kanamy-
cin. The kanamycin selection cassette was removed by arabinose
induction of the Flpase expressed in the SW105 cells. Finally, the
cftr:Gal4 BAC was further recombined with iTol2-Amp (Suster et al.,
2009) to deliver inverted Tol2 sites to the BAC vector sequence using
the following primers: iTol2-indigo-F, TCTCTGTTTTTGTCCGTGGAAT-
GAACAATGGAAGTCCGAGCTCATCGCTA CCCTGCTCGAGCCGGGCCCAA-
GTG and iTol2-indigo-R, CGACACCCGCCAACACCCGCTGACGCGAACC-
CCTTGCGGCCGCATCGAAT ATTATGATCCTCTAGATCAGATCT. The com-
pleted cftr:Gal4 BAC DNA was prepared using the Nucleobond BAC-
100 kit (Clontech, Mountain View, CA, USA). Zebrafish were injected
with 75 pg BAC DNA and 50 pg transposase RNA. Fish were screened
for transgenesis by mating to the Tg(UAS:GFP)zf82 line to drive GFP
expression and a line with robust UAS:GFP induction was selected to
generate the TgBAC(cftr:Gal4) line.

Live imaging

Live imaging was performed by mounting fish anesthetized
with 0.16 mg/ml tricaine (Sigma, A5040) in 3% methylcellulose.
Pancreatic ducts expressing Cftr-GFP or Cftr-RFP were imaged
using an upright Leica SP5 confocal microscope using a 40�
HCX PL APO objective. Stacks of z-planes from the pancreatic ducts
were compiled using Fluorender to generate three dimensional
reconstructions (Wan et al., 2012). Larvae for quantification of
secondary islets were similarly prepared and imaged using a Zeiss
Imager M1 with an EC Plan-Neufluar 10� /0.3 objective.

Immunofluorescence

Antibody staining of wholemount zebrafish was performed as
previously described (Dong et al., 2007). Briefly, larvae were fixed
with 3% formaldehyde (Mallinkrodt) in 0.1 M PIPES (Sigma),
1.0 mM MgSO4 (Sigma), and 2 mM EGTA (Sigma) at pH 7.0 (PEM
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solution) overnight at 4 1C. The ventral skin flanking the liver and
pancreas was removed with forceps and any remaining yolk was
removed. The larvae were then stained with anti-insulin (Dako,
Carpinteria, CA, USA, 1/100, guinea pig), anti-glucagon (Sigma, 1/
200, mouse), or anti-carboxypeptidase (anti-CP-A) (Rockland,
Philadelphia, PA, USA, 1/500, rabbit). Primary antibodies were
detected using goat anti-mouse Alexa488 (Molecular Probes,
Grand Island, NY, USA, 1/300), goat anti-guinea pig Alexa568
(Molecular Probes, 1/300), or goat anti-rabbit Alexa568 (Molecular
Probes, 1/300) in addition to either Alexa Fluor 568 or 647
Phalloidin (Molecular Probes, 1/500) to mark filamentous actin.
Stained wholemount zebrafish were dehydrated in a glycerol
series and mounted in 100% glycerol for imaging.

Zebrafish sections were prepared for immunofluorescence and
confocal microscopy as previously described (Alvers et al., 2014;
Bagnat et al., 2007). Whole larvae and adult visceral organs were
removed by dissection and were placed in 3% formaldehyde in PEM.
Samples were mounted in 4% low melt agarose (Bioline, Kaysville,
UT, USA) and cooled at 4 1C for at least 1 h. The resulting blocks
were sectioned using a Leica VT 1000S Vibratome to generate
200 mm (larvae) to 300 mm (adult) sections. These sections were
stained with anti-carboxypeptidase (Rockland, 1/500, rabbit), anti-
insulin (Dako, 1/100, guinea pig), anti-glucagon (Sigma, 1/200,
mouse), or zn-5 (Zebrafish International Research Center, 1/1000,
mouse). The primary antibodies were detected as above. Samples
were imaged using a Leica SP5 confocal microscope.

Histology

The visceral organs from adult zebrafish were removed by
dissection and immediately placed in 4% PFA for 48 h at 4 1C.
Histology was performed as previously described (Moss et al.,
2009). Periodic Acid Schiff (Sigma, 395B) was performed on
paraffin sections according to the manufacturer’s suggestions.
Stained sections were imaged with a Zeiss Discovery.V20 stereo-
scope using a PlanApo S 3.5� mono objective.

Pharmacological treatments

Precocious secondary islets were induced by treatment with
DAPT (Sigma, D5942). Fish were treated with 100 mM DAPT or DMSO
in egg water from 3 to 5 dpf and secondary islets were analyzed at
7 dpf (Parsons et al., 2009). To disrupt neutrophil recruitment,
zebrafish larvae were treated with 0.5 mM PF1052 (Wang et al.,
2014) (Enzo Life Sciences, Farmingdale, NY, USA, ALX-380-147) from
14 to 18 dpf. Fish were placed in 0.5 mM PF1052 or 0.005% DMSO in
egg water at 14 dpf. The fish were transferred to new water at 16 dpf
and the fish were fed overnight at 15 and 17 dpf. Treated fish were
fixed overnight at 4 1C in 3% formaldehyde in PEM solution at 18 dpf.
Fixed larvae were sectioned and imaged as above.

Statistical analysis

Total number of β cells was determined by obtaining confocal
stacks through complete islets. The β cells of principal islets were
visualized using an anti-insulin antibody (Dako, 1/100). Secondary islet
β cells were visualized using the Tg(ins:dsRed) transgenic line on a Zeiss
ImagerM1with a EC Plan-Neufluar 10� /0.3 objective. Total number of
β cells and secondary islets were compared between cftr mutants and
their WT siblings using a two tail unpaired Student’s t-test.

The relative acinar area of transverse sections of WT and cftr
mutant pancreata expressing ela:GFP was compared using ImageJ
(NIH, Bethesda, MD, USA). The area of ela:GFP expression was
obtained using ImageJ to threshold and segment the GFP expres-
sing pixels. The total area of the pancreas was obtained by
outlining the pancreas using the polygon selection tool. The

relative GFP area for each sample was determined by dividing
the ela:GFP-expressing area by total pancreas area for each sample
and the vehicle versus PF1052 treatment groups were compared
using a two tail unpaired Student’s t-test.

Neutrophil recruitment to the pancreas was quantified by analyzing
whether neutrophils were present in pancreatic sections from WT and
cftr mutant samples. We grouped samples by the presence or absence
of neutrophils in the pancreas. The total number of samples in each
group was summed and compared using the chi-squared test. We also
plotted the average number of neutrophils observed in each pancreas
and compared the two groups using a two tail unpaired Student’s t-test.

Body length was determined at various ages using ImageJ. Fish
were anesthetized with tricaine, then imaged with a standard
length reference. The body lengths were determined using the line
tool in ImageJ to trace the distance from the tip of the mouth to
the end of the tail. The average body lengths for each group were
compared using a two tail unpaired Student’s t-test.

Survival was tracked for 30 WT and 30 cftr mutant siblings
from day 7 to day 32. At each timepoint, the total number of fish
remaining in each group were counted. The relative survival was
plotted against the total time of the experiment.

Results

Expression and localization of Cftr

In the pancreas of humans and other mammals, CFTR is expressed
primarily within the pancreatic ducts (Cohn et al., 1993; Ostedgaard
et al., 2011). To determine whether the mammalian CFTR expression
pattern is reflected in the zebrafish we first investigated the cftr
expression pattern. Using in situ hybridization to detect the cftr
transcript, we found that cftr is expressed in the pancreas at 3 days
post fertilization (dpf). This corresponds to an early stage in the
development of the pancreatic duct, as the ductal network is forming
from unpolarized progenitors and its expression pattern is similar to
other markers of the developing pancreatic duct (Pauls et al., 2007;
Yee et al., 2005) (Fig. 1A and B). At 5 dpf, cftr was detected in a
branched pattern reflecting the morphology of the pancreatic duct at
later stages (Fig. 1C and D).

To observe the dynamics of Cftr expression and localization of in
the zebrafish pancreas more closely, we utilized a pair of BAC
transgenic lines encoding functional C-terminal Cftr-GFP or Cftr-RFP
fusion proteins (Navis et al., 2013). We first examined expression of
TgBAC(cftr-GFP) at 3 dpf, during the initial stages of pancreatic duct
development. At this stage, Cftr-GFP is expressed in the center of the
pancreas, distinctly from the expression pattern of TgBAC(ptf1a:Gal4)
in the acinar cells and consistent with expression of cftr in the
pancreatic duct (Fig. 1E). In transverse section at 5 dpf, Cftr-GFP
remained in the center of the pancreas, indicative of expressionwithin
the pancreatic duct (Fig. 1F).

To determine whether cftr is expressed along the length of the
pancreatic duct, we performed live confocal imaging of 6 dpf
pancreata in the sagittal plane. Cftr expression from TgBAC(cftr-
GFP) was visualized in conjunction with Tg(ins:dsRed) to mark the β
cells of the pancreatic islet. We found that Cftr-GFP is localized
along the pancreatic duct in a pattern distinct from the endocrine
cells of the principal islet (Fig. 1G, Supplementary material Movie
1). Although cftr expression has been reported at low levels in the β
cells of the islets in other systems (Boom et al., 2007; Guo et al.,
2014), we did not observe cftr expression in the islets, which may be
expressed below visual detection limits. To examine expression of
cftr in conjunction with the cells of the acinar cells of the exocrine
pancreas, we imaged TgBAC(cftr-RFP) in the Tg(ela:GFP, lfabp:dsRed)
background at 6 dpf, which expresses GFP in the pancreatic acinar
cells and dsRed in the liver. Live confocal imaging of these fish
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revealed that cftr is expressed in a thin stripe in the center of the
pancreas, indicative of ductal localization (Fig. 1H, Supplementary
material Movie 2). These results demonstrate that cftr is expressed
along the pancreatic duct in zebrafish.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.ydbio.2014.12.034.

We next investigated the localization of Cftr within the pancreatic
duct epithelium. The TgBAC(cftr-GFP) and TgBAC(cftr-RFP) lines, which
express full length GFP or RFP-tagged Cftr were previously shown to
localize apically within the polarized Kupffer’s vesicle epithelium
(Navis et al., 2013). To determine whether Cftr is also localized at the
apical membrane in the pancreatic duct, we wanted to visualize Cftr
localization in conjunction with a specific, cytosolic marker of the
pancreatic duct epithelium. To this end we generated a new
transgenic line using the cftr BAC to drive Gal4-VP16 expression
(TgBAC(cftr:Gal4)). To examine the intracellular localization of Cftr
within the cells where it is normally expressed, we generated
zebrafish expressing TgBAC(cftr-RFP); TgBAC(cftr:Gal4); Tg(UAS:GFP).
In these fish, the cytoplasm of the pancreatic duct epithelium is
labeled by GFP, and Cftr-RFP can be clearly seen localized to the
apical membrane of opposing cells lining the lumen of the pancreatic
duct (Fig. 2A and A0). Additionally, we detected high levels of cftr
expression in discrete cells along the intestinal epithelium (Fig. 2A
and A0), similar to what was previously reported in mammals using

immunohistochemistry (Ameen et al., 1995). As in mammalian
systems, Cftr-RFP was localized to puncta near the apical surface,
where it may help regulate intestinal fluid secretion (Fig. 2A and A0).

We also examined Cftr localization at later stages in fish expres-
sing TgBAC(cftr-RFP) in the pancreatic duct and ptf1a:GFP expressed
in the surrounding acinar tissue. To mark the apical membrane of the
pancreatic duct, we used phalloidin to detect filamentous actin,
which is a well-characterized marker of the apical membrane of
the pancreatic duct (Fallon et al., 1995; Kesavan et al., 2009). At
21 dpf, Cftr-RFP was localized at or near the apical membrane of the
ductal cells, marked by phalloidin staining, and did not overlap with
the acinar marker ptf1a:GFP (Fig. 2B and B0). We also examined
expression of cftr in the adult zebrafish, and found Cftr-GFP localized
in a similar pattern as phalloidin in the adult pancreatic duct,
indicating that Cftr is a clear marker of the apical membrane of the
pancreatic duct in the adult zebrafish pancreas (Fig. 2C, C0, D and D0),
similar to previous descriptions of the human pancreas (Cohn et al.,
1993). These results reveal that cftr is a robust marker of the
pancreatic duct from its formation and throughout zebrafish life.

Pancreatic development is not affected in cftr mutants

Since cftr is expressed in the early stages of pancreatic develop-
ment, we next investigated whether cftr mutants have defects in the

Fig. 1. cftr is expressed in the pancreatic duct. (A–D)Wholemount in situ hybridization for cftr. (A) Dorsal and (B) lateral view of cftr expression at 3 dpf. (C) Dorsal and (D) lateral view
of cftr expression at 5 dpf. (E and F) Transverse section of TgBAC(cftr-GFP) expressed in the pancreatic duct at (E) 3 dpf in conjunction with ptf1a expression in the acinar cells of the
pancreas and (F) at 5 dpf in conjunction with ZN-5, an antibody that marks the pancreas. (G) Live, confocal image of TgBAC(cftr-GFP) expression along the length of the pancreatic duct in
conjunction with Tg(ins:dsRed) to mark the β cells of the principal islet at 5 dpf. (H) Live confocal image of ductal TgBAC(cftr-RFP) expression in conjunction with ela:GFP to indicate the
acinar tissue. White arrows indicate cftr expression in the pancreatic duct. ib: intestinal bulb, ov: otic vesicle, p: pancreas. (A–D) Scale bars¼100 mm, (E–H) Scale bars¼50 mm.
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development of the pancreas. We tested whether loss of cftr function
leads to defects in lumen formation in the pancreatic duct, which
may underlie ductal blockages seen later in life. Consistent with this
hypothesis, fluid secretion has been previously shown to be impor-
tant for single lumen formation in the zebrafish intestine (Bagnat
et al., 2007) and lumen opening in Kupffer’s vesicle (KV) (Navis et al.,
2013). One possibility is that loss of Cftr-dependent fluid secretion
may lead to defects in lumen formation in the pancreatic duct. In WT
zebrafish, the pancreatic duct extends along the length of the
pancreas at 5 dpf, marked by apical accumulation of filamentous
actin (Fallon et al., 1995; Kesavan et al., 2009). We examined cftr
mutants for discontinuous filamentous actin, which would be
indicative of defects in the formation of a continuous ductal lumen.
We found no differences in the formation of the pancreatic duct
between cftr mutant and WT larvae, indicating that the pancreatic
duct undergoes successful lumen formation (Fig. 3A, A0, B and B0).

We next examined whether cftr mutants have defects in the
development of the exocrine pancreas. To determine whether the
pancreas has any defects in gross morphology we examined 5 and
10 dpf larvae expressing Tg(ela:GFP) to label acinar cells. We found
that in cftr mutant fish the acinar tissue appears identical to WT
siblings at 5 and 10 dpf (Fig. 3C–F), indicating that the exocrine
pancreas also develops normally during the initial stages of larval
development in cftr mutant zebrafish.

Many CF patients with pancreatic insufficiency also develop
cystic fibrosis related diabetes (CFRD), which may be due to defects
in the function or composition of pancreatic islets (Mackie et al.,
2003). We therefore examined whether defects in the development
of β cells underlie the changes seen CFRD. The zebrafish islet
contains two types of islets, the principal islet, which is specified

early in pancreatic development, and the secondary islets, which
arise later through a process more similar to the formation of
mammalian islets (Parsons et al., 2009). The total number of β cells
in the principal islet was similar between cftrmutants and their WT
siblings at several stages from 3 to 14 dpf (Fig. 3G). We next
examined the total number of secondary islets at 14 dpf and found
that cftr mutants contained similar numbers of secondary islets and
similar total number of β cells within those islets compared to their
WT siblings (Fig. 3H and I). Even at 14 dpf, secondary islets are
relatively rare, so we stimulated precocious islet formation by
treating with DAPT, a previously characterized inhibitor of gamma
secretase activity that induces early secondary islet formation
(Parsons et al., 2009). After treatment with DAPT, we again
observed that the total number of secondary islets and β cells
remained similar between cftr mutants and their WT siblings at
7 dpf (Fig. 3J and K). Together, these results indicate that the initial
development of β cells occurs normally in cftr mutant zebrafish.

Additionally, we also examined maternal-zygotic cftr mutants
and found no gross developmental abnormalities in the pancreas
except for the previously reported situs defect that stems from the
loss of KV function (Navis et al., 2013). Altogether, these results
indicate that pancreatic organogenesis occurs normally during the
early stages of development in cftr mutant zebrafish.

Pancreatic destruction in cftr mutants

To determine whether cftr is instead required for pancreatic
function in the larval zebrafish, we next examined later stages to
identify whether cftrmutant zebrafish undergo pancreatic destruction
similar to CF. While raising cftr mutants to adulthood, we observed

Fig. 2. Cftr is localized to the apical membrane of the pancreatic duct epithelium throughout life. (A and A0) Transverse section of 5 dpf larvae expressing TgBAC(cftr-RFP) to
show Cftr-RFP localization and TgBAC(cftr:Gal4); Tg(UAS:GFP) to mark the cytosol of cftr expressing cells with GFP. Dashed white lines indicate the periphery of pancreas. Inset is
3� magnification of ductal cells. ib: intestinal bulb. (B and B0) Transverse section of a 21 dpf larvae demonstrating Cftr-RFP localization at the apical membrane of the pancreatic
duct in conjunction with TgBAC(ptf1a-GFP) expressed in the acinar cells. Cftr is observed at or near the apical membrane marked with phalloidin. (C and C0) Transverse section of
3 month, adult pancreas indicating Cftr-GFP expression in pancreatic ducts throughout the pancreas. Dashed white lines indicate the periphery of the pancreas. Red dashed box
indicates inset (D). (D and D0) Cftr-GFP is localized at or near the apical membrane of the pancreatic ducts, marked by phalloidin staining. Arrows indicate ductal expression of
Cftr. Scale bars¼50 mm.
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that a large percentage of the mutants are lost beginning around
10 dpf (Supplementary material Fig. S1A). Furthermore, we noted that
the cftr mutants begin to experience growth restriction coincident
with the decreased survival (Supplementary material Fig. S1B),
suggesting that pancreatic defects may begin around this stage. At
12 dpf, the acinar tissue appears similar between WT and cftr mutant
siblings (Fig. 4A and B). At 14 dpf, the acini of WT and cftr mutant
siblings again appear largely similar (Fig. 4C and D), but some mild
disruption can be detected in the cftr mutant pancreas. By 16 dpf, loss
of acinar tissue is readily apparent, with a large amount of tissue lost
in every cftr mutant zebrafish we examined at this stage (Fig. 4E and
F). At 22 dpf, most pancreatic acinar tissue is absent in the cftr mutant
fish (Fig. 4G and H). This progression is indicative of pancreatic
destruction beginning between 14 and 16 dpf. The loss of ela:GFP
marked tissue is similar to the pattern observed in adults, with a thin
layer of remaining acinar cells surrounding a core of disrupted tissue.
The rapid and widespread loss of pancreatic tissue appears highly
similar to the destruction observed in mammalian models of CF,
indicating that the zebrafish models severe pancreatic disease in CF.

Pancreatic destruction in adult cftr mutant zebrafish

In the majority of CF patients, the acinar tissue in the exocrine
pancreas undergoes severe destruction and is largely replaced by

fibrotic tissue (Wilschanski and Novak, 2013). To determine whether
cftr mutant zebrafish develop the hallmarks of pancreatic disease
characteristic of CF patients, we next examined the adult zebrafish
pancreas. We first assessed the integrity of the exocrine pancreas by
examining expression of a transgenic line that expresses GFP in the
acinar cells and dsRed in the liver (Tg(ela:GFP; lfabp:dsRed)). In WT
zebrafish, ela:GFP expression can be widely observed throughout the
pancreas; however, in cftr mutant siblings, the ela:GFP expression is
restricted to the periphery of the pancreas and appears to be replaced
by actin-rich, fibrotic tissue (Fig. 5A and B). The loss of pancreatic acini
is consistent with severe pancreatic disease observed in human
patients and other mammalian models.

In contrast to the severe destruction of exocrine tissue, the
endocrine islets are largely spared in human patients, but they
appear more disorganized due to a change in the composition of
the islets (Iannucci et al., 1984; Löhr et al., 1989). Additionally, the
β cells of the CF pancreas have reduced function, displaying
altered responses to blood glucose (Handwerger et al., 1969;
Olivier et al., 2012). We examined the composition of the zebrafish
islets by staining for α and β cells in the islets. In contrast to the
large core of β cells surrounded by a layer of α cells present in WT
fish at 3 months post fertilization, the islets of the cftr mutant
pancreas seem disorganized, appearing smaller and more numer-
ous than those of their WT siblings (Fig. 5C and D).

Fig. 3. Development of the cftr mutant pancreas. (A) Wholemount confocal image of WT pancreas stained with anti-carboxypeptidase (CP-A) to detect acinar cells and
phalloidin to mark actin at the apical membrane of the pancreatic duct. (A0) Associated WT image without anti-CP-A to better visualize the contiguous actin strip along the
length of the duct indicative of a continuous lumen. (B) Wholemount confocal image of a cftr pancreas stained with anti-CP-A and phalloidin. The actin network is
contiguous in cftr mutants indicative of a continuous lumen. (C–F) Wholemount WT and cftr mutant samples expressing ela:GFP to mark acinar tissue and stained with DAPI
to mark nuclei at (C and D) 5 dpf and (E and F) 10 dpf. (G) Quantification of principal islet β cells at several stages. (H) Quantification of total number of secondary islets at
14 dpf and (I) total number of secondary β cells at 14 dpf. WT, n¼7; cftrpd1049 n¼6. (J) Quantification of DAPT induced secondary islets and (K) total number of DAPT induced
secondary islet β cells. WT, n¼5; cftrpd1049, n¼4. Error bars represent s.e.m. Scale bars¼50 mm.
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We also examined the histology of the adult zebrafish pancreas
using hemotoxylin and eosin staining of pancreata from 3 months
post fertilization WT and cftr mutant siblings. We found that
mutants undergo severe pancreatic destruction in a pattern highly
reminiscent of the human CF pancreas (Fig. 5E and F). At this stage,
the cftr mutant pancreas contains small groups of remaining acinar
tissue interspersed between large amounts of fibrotic tissue. To
determine whether the exocrine pancreas is further lost in older
zebrafish, we examined one year old cftr mutants and found that
the characteristic composition of acinar tissue is almost completely
absent, with surviving acinar tissue restricted to the periphery of
the pancreas (Fig. 5G and H). Close observation revealed that in cftr
mutants the acinar tissue appeared to be replaced by a large
amount of fibrotic tissue surrounding dilated ducts and islets that
are largely spared from the surrounding destruction. This is similar
to CF in human and in mammalian animal models, where the
pancreatic ducts become filled and dilated by a large amount of
mucus (Andersen, 1938; Rogers et al., 2008; Sturgess, 1984; Sun
et al., 2010). To determine whether the zebrafish ducts are similarly
filled with mucus, we performed Periodic Acid Schiff (PAS) staining
on adult pancreatic sections. PAS staining detected that the dilated
ducts in cftr mutant zebrafish are also filled with mucus (Fig. 5I and
J). Altogether, these results indicate that the cftr mutant zebrafish
pancreas develops severe pancreatic disease mirroring that of
human CF patients.

Immune response and pancreatic destruction

We next investigated the role of neutrophils during pancreatic
destruction in cftr mutants. Neutrophils and other members of the
innate immune response have previously been detected in the CF
pancreas, though their precise role during pancreatic destruction is
unknown (Abu-El-Haija et al., 2012; Andersen, 1938; Meyerholz et al.,

2010; Olivier et al., 2012). A hallmark of pancreatitis is neutrophil
infiltration, which occurs early during pancreatitis (Mayerle et al.,
2005). We therefore examined whether neutrophils are similarly
recruited to the pancreas in cftr mutants during the early stages of
pancreatic destruction by examining a transgenic line expressing
dsRed in neutrophils (Tg(lysC:dsRed)) (Hall et al., 2007; Yang et al.,
2012). We crossed this line into the cftrpd1049 background and
examined cftr mutants and WT siblings at several stages. At 14 dpf,
we did not observe neutrophils in the pancreas of cftr mutants or
their WT siblings (Fig. 6A and B). However, at 16 dpf, neutrophils
were more frequently detected in the cftr mutant pancreas than in
WT, at a stage when pancreatic destruction is apparent (Fig. 6C–F).

The prevailing view of pancreatitis suggests that ductal blockage
leads to activation of zymogens trapped within the acinar cells. This
in turn leads to digestion of the acinar tissue, causing tissue
damage, inflammation, and neutrophil recruitment. The neutrophils
then amplify the inflammatory signal, eventually leading to repla-
cement with fibrotic tissue (Lerch and Gorelick, 2013; Whitcomb,
2004). However, a recent report suggests that neutrophils may
instead play a more central role in the process of auto-digestion. In
this alternative model, neutrophils are recruited early and generate
inflammatory signals that cause the acinar cells to drive activation
of intracellular zymogens (Sendler et al., 2013).

We next used a recently described inhibitor of neutrophil migra-
tion, PF1052 (Wang et al., 2014), to examine the role of neutrophils
during pancreatic destruction. WT and cftr mutant siblings were
treated from 14 to 18 dpf with 0.5 mM PF1052. This treatment had
no obvious effects onWT larvaewhich appeared to be healthy, and the
PF1052 treated WT pancreata were indistinguishable from vehicle-
treated controls (Fig. 6G and I). In contrast, cftr mutant zebrafish
treated with PF1052 demonstrated a significant preservation of acinar
tissue compared to vehicle treated mutants (Fig. 6H, J and K). PF1052
did not completely rescue the amount of acinar tissue to WT levels,

Fig. 4. Timecourse of pancreatic destruction in cftr mutants. (A and B) Transverse section of Tg(ptf1a:GFP) expression marking the acinar cells in (A) WT and (B) cftr
mutant samples. (C and D) Transverse section at 14 dpf of (C) WT and (D) cftr mutant pancreas marked by ela:GFP expression. (E and F) Transverse section of (E) WT and
(F) cftr mutant samples expressing ela:GFP in the acini demonstrating loss of pancreatic acinar tissue at 16 dpf. (G and H) Transverse section of (G) WT and (H) cftr mutant
samples expressing ela:GFP in the pancreas at 22 dpf with severe pancreatic destruction. Arrow indicates absent acinar tissue. Scale bars¼50 mm.
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Fig. 5. Adult cftr mutants undergo severe pancreatic destruction. (A and B) Transverse section of (A) WT and (B) cftrpd1049 mutant pancreas expressing ela:GFP in acinar
cells. (C and D) Transverse section of 3 month post fertilization (mpf) WT and cftr mutant pancreas stained for insulin and glucagon to mark the pancreatic islets. (E–H)
Hematoxylin and eosin staining of WT and cftr mutant pancreatic sections at (E and F) 3 mpf and (G and H) 1 year post fertilization. (I and J) Period Acid Schiff staining of
3 mpf transverse sections of the pancreas indicating mucus within the lumen of the pancreatic duct. Arrows indicate dilated pancreatic ducts. ib: intestinal bulb, p: pancreas,
l: liver. Scale bars¼50 mm.
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likely due to a lower dose of PF1052 than previous reports (Wang
et al., 2014), which may incompletely block migration. PF1052 at the
higher, previously published dose was toxic for overnight treatment.
These data suggest that neutrophils play a role in acinar destruction in
the zebrafish pancreas.

Discussion

In this study we describe a new zebrafish model of CF, which
recapitulates many aspects of the pancreatic disease observed in
humans. Lacking cftr activity, the zebrafish pancreatic ducts are filled
with mucus and the pancreatic acinar tissue is rapidly destroyed. We
also found that the zebrafish had no major defects in the initial
development of the pancreas, indicating that pancreatic destruction

occurs due to processes that take place after the pancreas is formed.
Interestingly, the destruction is accompanied by a modest but
significant increase in neutrophil infiltration, in a process that
appears similar to the onset of pancreatitis.

In zebrafish mutant for cftr, pancreatic destruction begins
between 14 and 16 dpf, leading to rapid destruction of acinar tissue.
The cftr mutant zebrafish pancreas displays several hallmarks of
pancreatitis including recruitment of neutrophils to the affected area,
destruction, and later replacement of the affected tissue by fibrosis.
These changes are reminiscent of CF in the pancreas and demon-
strate that cftr function in the zebrafish is similar to that in mammals.

Traditionally, neutrophils have been thought to be recruited after
the acinar cells begin to be digested (Whitcomb, 2004); however, a
recent report suggested that neutrophils are essential to stimulate
auto-digestion (Sendler et al., 2013). The recruitment of neutrophils

Fig. 6. Neutrophil recruitment during pancreatic destruction. (A and B) Neutrophils are absent from representative sections of (A) WT and (B) cftr mutant pancreata at
14 dpf. (C and D) Neutrophils are absent from the (C) WT pancreas at 16 dpf, but present in the (D) cftr mutant pancreas. (E and F) Quantification of (E) the ratio of sections
with neutrophils present versus absent to the total number of sections and (F) the average number of neutrophils observed in each pancreas indicating a significant
difference in pancreatic neutrophils in the 16 dpf cftr mutant pancreas. The median number of neutrophils in each WT pancreas was 0, ranging from 0 to 1 and cftrpd1049 was
1, ranging from 0 to 5. WT, n¼8; cftrpd1049, n¼13; nPo0.01. Error bars represent s.e.m. (G and H) DMSO treated (G) WT and (H) cftr mutant samples at 18 dpf expressing ela:
GFP in the acinar cells demonstrate typical pancreatic destruction. (I and J) Representative sections of (I) WT and (J) cftr mutant pancreata at 18 dpf treated with PF1052
showing preservation of acinar tissue. (K) Quantification of area of GFP expression divided by total pancreas area for each treatment group showings significantly more area
of acinar tissue marked by ela:GFP in PF1052 treated mutants compared with DMSO treated mutants. WT DMSO, n¼8; WT PF1052, n¼7; cftrpd1049 DMSO, n¼8; cftrpd1049,
n¼12; nPo0.01. Error bars represent s.e.m. Arrows indicate neutrophils. Scale bars¼50 mm.
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during pancreatic destruction in the zebrafish suggests that pancrea-
tic disease observed in cftr mutants reflects early stages of pancrea-
titis and indicates that the cftr mutant pancreas may be a useful
model to study the onset of pancreatitis. While these results suggest
a role for neutrophils during pancreatic destruction, a definitive
demonstrationwill require more comprehensive and focused studies.
It will also be important to investigate the role of macrophages in this
process to gain a more complete understanding of the innate
immune system in the CF pancreas. A better understanding of the
precise mechanisms that lead to pancreatic destruction will be
essential to preserving remaining pancreatic function in pancreatic
sufficient CF patients and for pancreatitis promoted by single mutant
CFTR alleles. A robust zebrafish genetic model of pancreatitis may
facilitate discovery of new avenues for treatment and prevention of
pancreatic destruction.

Recent reports indicate that CFTR also functions to regulate
insulin secretion in the β cells of pancreatic islets (Guo et al., 2014).
We found that the β cells develop normally in cftr mutants and,
consistent with previous reports, we observed that islets in the
adult pancreas were largely spared from destruction of the sur-
rounding acinar cells. Further, we did not observe expression of cftr
in the islet, although we cannot rule out the possibility that cftr is
expressed in the islets at very low levels. While in vitro studies
point to a role for cftr the pancreatic islet, it will be important to
identify whether cftr is required for β cell function in vivo. Standard
glucose tolerance tests are not simple to perform in the zebrafish, so
it will be important to develop new tools for monitoring insulin
secretion and electrical currents in the β cells to more specifically
test whether cftr mutant zebrafish develop a form of CFRD.

The zebrafish represents a new model for screening for com-
pounds and genes that modulate Cftr activity. Substantial effort has
been allocated to identify compounds to treat CF by correcting or
improving the activity of mutant CFTR alleles, especially the most
common allele, CFTRΔF508. While several compounds have seen
success in vitro, their efficacy has rarely translated to humans. A
recent pair of studies investigating a combination of the two most
promising compounds to treat CFTRΔF508 suggests that they may
have antagonistic effects, limiting their efficacy (Cholon et al., 2014;
Veit et al., 2014). These studies highlight the critical importance of
identifying new compounds that are functional in vivo.

The zebrafish offers an in vivo model for rapidly assaying cftr
activity. The zebrafish organ of left-right asymmetry, Kupffer’s vesicle
(KV), is an enclosed lumen inflated by Cftr-dependent fluid secretion
(Navis et al., 2013). Loss of fluid secretion in cftrmutant zebrafish can
be easily observed as a failure of KV lumen expansion at the 10–12
somite stage, occurring within 14 hours post fertilization (hpf) or as
late at 24 hpf if the fish are grown at lower temperature. Additionally,
drugs that modulate cftr activity regulate the size of Kupffer’s vesicle,
indicating that the organ can indicate Cftr activity level (Navis et al.,
2013). Compounds that rescue activity of CFTRΔF508 expressed in
the zebrafish Kupffer’s vesicle could represent a new class of
therapeutics to more effectively treat CF in vivo.

A recent focus of the CF community has been to identify
modifier genes of CF that influence disease outcome (Drumm
et al., 2005). The zebrafish offers a new way to identify CF
modifiers through forward genetic screens. A suppressor screen
in the zebrafish could offer a new, unbiased approach to identify
genes that modulate Cftr-dependent fluid secretion in Kupffer’s
vesicle or prevent pancreatic pathology in cftr mutants. Forward
genetic screens in the zebrafish may identify entirely new modi-
fiers of CF to open new avenues for treatment.

The zebrafish has lacked robust transgenic markers of the
pancreatic ducts. Here, we demonstrate that Cftr is a clear marker
of the pancreatic duct in zebrafish. Transgenic lines that express C-
terminal GFP or RFP fusions mark the apical membrane of the
pancreatic duct throughout zebrafish life. Additionally, we generated

a new line, TgBAC(cftr:Gal4), which expresses Gal4 under the control
of the cftr promoter. In combination with various UAS lines, cftr:Gal4
can drive a variety of functional reagents in the pancreatic duct.
These markers of cftr expression will allow new analysis of pan-
creatic duct development and function.

Conclusions

This study describes a newmodel for understanding the onset and
pathophysiology of cystic fibrosis in the pancreas and other organs.
We identified that cftr is a clear marker of the zebrafish pancreatic
duct in vivo using several transgenic lines and that loss of Cftr
function mirrors many aspects of CF. We were unable to identify
early defects in the development of the pancreas, suggesting that cftr
is instead essential for function of the pancreatic ducts in the larval
and adult zebrafish. Importantly, we demonstrate that the zebrafish
undergoes severe pancreatic destruction reminiscent of CF in humans.
The zebrafish is a powerful genetic model with clear readouts of Cftr
activity that will simplify in vivo pharmacological and genetic screens.
Furthermore, the rapid onset of pancreatitis in the cftr mutant
zebrafish offers a robust genetic model to study mechanisms driving
pancreatitis. This work establishes cftrmutant zebrafish as a model of
pancreatic disease similar to that of human CF.
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