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Abstract

We analyze the time pattern of bargaining outcomes in ransom negotiations with Somali pirates, using
a unique data set with a comprehensive coverage of kidnapped ships in 2002-2012. We find that, even
when controlling with ship characteristics, negotiated ransoms initially increased by a large magnitude,
followed by negotiation durations sharply increasing as well. In the last years of the time period, both
average ransom levels and negotiation durations seemed to stabilize. We argue that the main force
behind these changes was learning by the pirates about the distribution of valuations of the buyers (ship
owners). To investigate this issue theoretically, we analyze a model involving a sequence of negotiations
with different buyers and sellers, in which buyers’ valuations are drawn independently from the same
distribution, initially unknown to the sellers. Sellers observe past negotiations and update their beliefs
on the distribution accordingly. We provide conditions under which over time sellers learn the true
distribution of valuations. We use our model framework for structural estimations and find that pirates’
beliefs over time did move closer to the true distribution of valuations, although not all the way. We use
the estimated parameters of the model for welfare analysis and investigation of counterfactual scenarios
such as bargaining outcomes with pirates starting out with correct beliefs.
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1 Introduction

Between 2002 and 2012, kidnapping ships for ransom evolved into a widespread and lucrative illegal activity
in Somalia. Over time, the pirates started employing more and more sophisticated techniques and strategies,
and vastly expanded the area for hijacking activities on sea. This prompted various counter-measures by ship
owners and by the international community. During this period, long hijacking durations of several hundred
days imposed huge welfare losses on crew, their family and ship owners.1 Perversely, duration seemed to
increase as pirates became more sophisticated.

In this paper, we analyze data on ransom negotiations that we collected from various sources. We find
that there was a marked increase in negotiated ransoms between 2008 and 2010 and a stabilization at the
higher level thereafter. Overall, the increase of ransom amounts in these two years was roughly twentyfold.
At the same time, negotiation lengths also increased rapidly between 2008 and 2010 (with an increased
spread) and also seemed to stabilize after 2010. Average duration increased from about 100 days in 2008 to
about 250 days in 2010. We argue that this joint pattern, and in particular the magnitude of the observed
changes, suggests that pirates initially underestimated the distribution of valuations (hence willingness to
pay by owners) for the kidnapped ships, and they have been learning about this distribution over the years
from outcomes of previous negotiations. The stabilization of average ransom and negotiation duration levels
in the last two years of the sample is consistent with the hypothesis that, by this time, learning had occurred,
and the beliefs of the pirates regarding values got close to the true distribution.

We argue that the main driving force of the observed pattern in negotiation outcomes was learning,
as there were no technological or institutional changes in our sample period that could reasonably explain
the enormous changes in negotiation outcomes (such as the twenty-fold increase in prices). Moreover, we
gathered data on observable characteristics of kidnapped ships (type of ship, size, age, crew size, etc.), and
the above patterns hold when we control for these characteristics. While the pirates might observe additional
ship characteristics influencing negotiation outcomes, we find it unlikely that this could explain the order
of magnitude of ransom increases in the data, since we observe the main characteristics of ships. Finally,
the observed patterns suggest that the learning mostly happened on the pirates’ side, as the increasing
ransom clearly benefited them, and not the ship owners. This corresponds to the pirates initially facing
more uncertainty regarding the distribution of valuations than the uncertainty ship owners faced regarding
the outside option of the pirates. We think this is a reasonable assumption, as the pirates had very limited
options other than releasing the kidnapped ship for ransom.

As a second step, we show that controlling for proxies of pirate learning, like the time period or a rolling
average of past ransoms, the length of a negotiation is negatively correlated with price, which is a basic
prediction of dynamic bargaining models in which there is uncertainty regarding the buyer’s valuation.

Motivated by the above observations, we theoretically investigate learning in an environment with a
sequence of bargaining problems. Specifically, we consider a discrete time model in which periodically a
seller and a buyer are drawn to engage in a “screening” type bargaining game (Sobel & Takahashi, 1983;
Fudenberg et al., 1985a; Gul et al., 1986) in which all offers are made by the seller.2 We assume that the
seller’s outside option is publicly known (normalized to 0), but the buyer’s evaluation is drawn iid from a
fixed value distribution. Moreover, the seller in our model does not know this distribution. Instead, there
is a set of possible distributions and a prior belief by the seller on this set. We also assume that outcomes
(agreed upon price and negotiation length) of all previous negotiations are publicly known. Hence, sellers
update their prior beliefs over the set of possible distributions, based on previous outcomes.3

The main question we address in the theoretical investigation is whether, in the above setting, sellers learn
the true distribution of valuations over time, and if their expected profits converge to the level they could
achieve if they knew the true distribution. Given an equilibrium sequence of offers within a negotiation,

1Besley et al. (2015) show that a transfer of about 120 million USD to pirates caused a welfare loss in excess of 640 million
USD and up to 3.7 billion USD.

2The assumption that all offers are made by the uninformed party makes the analysis considerably simpler. See the related
discussion in Kennan & Wilson (1993).

3We assume that buyers do know the true distribution of valuations, but the analysis would be exactly the same if the buyers
need to learn the true distribution too.
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different true distributions result in different probabilities of acceptance of offers in the sequence. Thus,
the number of offers made during a previous negotiation provides statistical information about the true
distribution. One complication is that the offer sequence, and hence the amount of statistical information
revealed, is an endogenous choice in the model. Another issue is that for a given sequence of offers, there
can be different distributions implying the same probabilities of acceptance in each round of the negotiation,
so that the said offer sequence does not help statistically distinguish among these distributions. A special
case of this is when it becomes optimal for the seller to immediately offer a price equal to the minimal
buyer valuation, which occurs when his beliefs are concentrated enough around the minimum. This offer is
accepted with probability 1 no matter what the true distribution of types is, in which case learning stops,
and in every future negotiation, the same offer is made and accepted.

Our main theoretical results provide sufficient conditions for full learning to occur over time, in the sense
of the seller’s beliefs converging to the true distribution as more and more negotiations are observed in the
past. If the set of possible distributions are ranked with respect to first order stochastic dominance, then a
simple condition guaranteeing that it is never optimal for the seller to start the negotiations with offering
the lowest possible price (equal to the minimal buyer type) is enough to guarantee full learning.

We structurally estimate our learning model using the data on negotiations with Somali pirates and a
maximum likelihood approach. We make the assumption that the possible buyer valuation distributions are
(truncated) lognormal, but the sellers need to learn the mean (and possibly the variance) of the distribution.
We estimate both the true distribution of valuations and the pirates’ beliefs in different periods of time.
The estimates show that the initial expected value in the pirates’ beliefs is much smaller than the true
expectation, but that over time, their expectations monotonically approached the true value, although even
in the final period did not fully reach it. We observe less evidence of convergence with respect to the variance
of the value distribution, suggesting that learning in that dimension is more difficult and slower.

We use our estimates for welfare analysis and find that the buyers were able to keep most of the total
value in the negotiations. The pirates initially only acquired a small fraction of the total value, but over
time their share of the surplus increased as they learned about the higher willingness to pay of the buyers.
The welfare losses due to discounting and depreciation were initially low, but they increased over time as the
negotiations became longer. In a counterfactual scenario in which the pirates started out with correct beliefs,
they would have been able to keep a higher share of the surplus than actually occurred even towards the end
of the actual scenario, while the buyers would have received less of the total surplus. In the counterfactual
scenario, welfare losses due to discounting and depreciation would have been much higher since negotiations
would have been long from the start.

2 Related Literature

In the empirical literature on bargaining, Watanabe et al. (2006) investigates learning during dispute reso-
lution in medical malpractice litigation. Some important differences relative to our setting are that learning
occurs within a given negotiation, and it is driven by exogenous signals publicly observed by the parties. A
more similar model to the one in the current paper is estimated in Ambrus et al. (2018), a paper investigat-
ing negotiations between slave holders in the Corsair state of Algiers and Spanish negotiators, using historic
data. However, Ambrus et al. (2018) assumes that the distribution of valuations is commonly known, and
therefore there is no learning over time by any of the parties. On a more technical level, the estimation
strategy in the current paper is different because we do not directly observe the number of negotiation
rounds. Other recent papers on estimating dynamic bargaining models with asymmetric information include
Keniston (2011), Backus et al. (2020), and Larsen (2021) although they are methodologically less related to
our study, as they investigate situations with asymmetric information on both sides (and abstract away from
learning).4 Lastly, Bhattacharya & Dugar (2023) in the context of a field experiment shows that pretending
to have financial constraints is a successful strategy in bargaining on the part of buyers.

4There is also an earlier string of literature on estimating dynamic bargaining models based on US data on wage negotiations:
see Fudenberg et al. (1985b) and Kennan & Wilson (1989).
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Outside the bargaining literature, Doraszelski et al. (2018) empirically investigates firms learning about
the demand function in a new market.

In the theoretical literature on bargaining, learning within a negotiation is analyzed in Hörner & Vieille
(2009) and Kaya & Liu (2015): a long-run seller/buyer with unit supply/demand faces an infinite sequence
of short-run buyers/sellers with unit demand/supply, each making a take-it-or-leave-it offer. The version of
the model having some common features with our model is when short-run agents can observe all previously
rejected offers. As opposed to our model, learning in these models is about the realized value of the single
good to be sold.

Lee & Liu (2013) consider learning from previous negotiation outcomes, although the main features of
the model and the types of questions addressed are very different from our paper. In their model there is
long-run player negotiating with a sequence of short-run players. Disagreement in each negotiation triggers
an uncertain outside option, which is drawn from one of two possible distributions. The distribution is
originally privately known by the long-run player, and short-run players can learn about it by observing past
negotiation outcomes. The main focus of the paper is examining the reputation-building incentives of the
long-run player, and the economic inefficiency it causes.

There are various other contexts in which agents learn from observing past behavior, and learning can
stop if agents at some point switch to actions that do not reveal further information. The most prominent
example is the literature on informational cascades and herding, started by Banerjee (1992), Bikhchandani
et al. (1992) and Welch (1992). As opposed to our model, in the above setting agents are learning about
a single parameter, as opposed to a distribution function. Moreover, in our model, sellers do not receive
private information, instead in every period a new public signal (potentially uninformative) is generated by
a given buyer’s actions. In a different setting (learning about one’s self-control) Ali (2011) investigates a
dynamic decision-making situation in which the decision-maker at some point can get stuck choosing menus
from which the observed choice does not reveal new information for the future, and hence learning might
never occur.

There is also a large literature on learning in repeated games, both regarding other players’ strategies, and
regarding payoff parameters of the game (for an overview, see Fudenberg & Levine (1998)). An important
insight from this literature is that when playing a Bayesian Nash equilibrium of a repeated game of incomplete
information about other players’ payoff matrices, players eventually end up playing a Nash equilibrium of
the true game (Kalai & Lehrer, 1993).

3 Background

Between April 2005 and December 2012, Somali pirates hijacked 179 ships.5 The vast majority of these were
released by pirates following the payment of ransom. The total amount of ransom money was estimated to
be between US$339 – US$413mn (Yikona, 2013).

In the early period of Somali piracy, target choice was largely based on opportunity: pirates found it
easiest to board slow ships with a low free-board in the Gulf of Aden or in the vicinity of the Somali coast.
As pirate groups developed and responded to naval and private sector counter-piracy efforts, pirates moved
from the Gulf of Aden into the Somali Basin. Attacks occurred at an ever-increasing radius from their home
ports (Shortland & Vothknecht, 2011; Percy & Shortland, 2013). Pirates also became more selective in their
targets, avoiding ships that had clearly adopted BMP (travelling at high speed with barbed wire and water
hoses), and possibly even researching their victims beforehand (Wired, 2009; Donohue et al., 2014).

Once pirates got on board a ship, the crew were used as human shields. Navies almost always drew back
at this point and pirates were allowed to direct the ships to the Somali coast for ransom negotiations to begin.
Ship owners and navies preferred paying ransoms to endangering crew safety, cargoes and ships in a military
rescue action (CIMSEC, 2013). By indicating their readiness to negotiate a ransom with pirates, ship owners
ensured that pirates in turn would keep their property intact and the crew alive (Wired, 2009; Telegraph,

5There were no successful hijacks after 2012.
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2013; Donohue et al., 2014).6 The actual negotiation would usually take place between a representative
of the ship-owner and a “negotiator” nominated by the pirate action group and its various stake-holders.7

Occasionally a government or groups representing crew’s families would take over negotiations from ship-
owners who refused to negotiate or were unable to raise a ransom. Similarly pirate groups sometimes
exchanged the negotiators in which they had lost faith (Donohue et al., 2014; report, 2012).

In the case of Western merchant shipping and fishing vessels, the ship-owner would have obtained in-
surance for travelling through the region. Insurers can only reimburse the ship owner after the ransom
negotiation has concluded and the ransom been paid (Bento, 2014; Time, 2009).8 Given their financial inter-
est in keeping ransoms low, insurers retain the services of professional ransom negotiators, who are deployed
immediately as the hijack is reported to the insurers (Telegraph, 2013; Time, 2009). The negotiators are
experienced in bargaining in hostage situations and in turn coach the ship-owner’s representative on how to
conduct the negotiation, are present to advise throughout the ransoming process and are often involved in
organising the ransom drop.9

The negotiations broadly took the form of demand and counter-offer, with pirates making the initial
demand and the ship-owner making the final (accepted) offer. In most cases the negotiation was initiated and
largely conducted on the ship’s own telecommunication system. This reassured the ship owner that whoever
was conducting the negotiation was actually in control of the ship. Crew members could be called in to verify
this and report on the health of the crew and state of the ship. Actual calls, particularly in the early stages
of the negotiation would be sporadic, with pirates imposing long periods of silence to raise pressure on the
ship owner. The gaps between contact points could stretch to several weeks and even months (interviews
with ransom negotiators, see also chronology of the Leopard ransoming on DR (2013)). Occasionally, when
pirates seemed keen to conclude, the same tactic was employed by the ship-owner, claiming that it would be
“inconvenient” to schedule the next call in the near future (interview with ransom negotiator).

Usually the first demand is a multiple of the final agreed price (Bento, 2014; Wired, 2009) – though
sometimes the pirates signalled their actual reservation price very early on in the negotiation (interview with
a ransom negotiator). Pirates are reported to base their assessment of a realistic ransom on a number of
factors: “media attention, the country to which the ship belongs, the nationality of the crew members and
many other things that arise from the context at the time of negotiations. If a country tries to re-take a
ship by force, or if a pirate is killed by foreign navies, the price goes up. Before doing any calculation of
ransom money, it’s important to know the owners and what the ship is carrying and also the nationalities
of the hostages.” (pirate cited in Donohue et al. (2014), pp.182). Bento in addition argues that grievances
over illegal and unlicensed fishing raised the ransoms for fishing vessels (Bento (2014), pp.309).

There is plenty of evidence that pirate groups shared information on ransoms with each other (Donohue
et al. (2014), pp.182). According to one pirate negotiator this could even take the form of “workshops” to
discuss strategies: ”The pirates are extremely good at sharing information. We know for a fact . . . the pirates
have piracy workshops. Pirates of various clans, [their] elders are getting together and they will exchange
information.” (NPR, 2009). Pirates also easily shared information with the media, with Somalia Report
often publishing a ransom figure upon release of a ship. However, in general the ransom figures obtained
from “pirate sources” tends be significantly higher than the ball-park figures published by shipping industry
insiders. Overall, we can assume that pirates were well informed about the ransoms paid to their own and
other pirate groups. The ship-owners, on the other hand, tended to keep actual ransoms paid confidential
and typically signed confidentiality agreements with the involved parties (Time, 2009; Guardian, 2014).
This is in part because of the unclear legal situation of paying ransoms and thereby abetting organised crime
(Bento, 2014). Although ship-owners were not officially sharing information, in practice there are only a
small number of firms which specialise in hijack for ransom cases and these would have had a fairly clear

6While ill-treatment of crew occurred when negotiations stalled and some crew members died of underlying medical conditions
or committed suicide, there were no incidents of murder.

7See Yikona (2013) and Do et al. (2013) for details on the organisation of pirate groups.
8In the case of bespoke kidnap and ransom insurance the pay-out would be immediate. Where ship-owners only had

mandatory crew, cargo and hull insurance pay-out only occurs once the different insurers have apportioned the losses between
them (interview with a ransom negotiator).

9As the presence of a professional ransom negotiator would indicate the financial power of an insurance company behind the
shipping company, the professional negotiators usually kept a low profile.
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idea of ransoms paid so far.

4 Data

Piracy incidents are reported by the International Maritime Bureau (IMB). IMB Reports are published
annually and reach back to 1992. The reports deliver detailed accounts of the kind of attack, location, time
and affected vessel. Attack reports contain the name of the ship, date of attack and location. The 2010 report
contains, for example, the following description: “On 05 March 2010, a Marshall Islands flagged Chemical
Tanker MT UBT Ocean was attacked and hijacked by armed pirates while underway in position Latitude
09:35 South and Longitude 044:18 East about 680 NM south of Mogadishu, Somalia at approximately 0535
UTC. The pirates managed to successfully board the ship and took hostage all 21 crew members and sailed
the ship to Somalia. It is believed a ransom was paid for the release of the crew and ship.”

We also went through additional sources from the UN, World Bank, Newspapers and other online sources.
We used these sources to collect data on: attack and release date, ransom amount in USD, ship size (tonnage),
ship type (yacht, bulk carrier, fishing vessel. . . ) crew size and composition in nationalities. Overall there
are 138 cases between 2002 and 2012 for which we have information on all of these variables. We also have
the ship age in 126 cases. Summary statistics are reported in appendix Table A1.

Ransom amounts are not always publicly disclosed, making reliable estimates difficult to obtain. However,
using a combination of direct contacts with ransom negotiators, primary sources within Somalia and open
sources, we were able to determine ransoms for a large majority of cases. However, for a number of ships,
we did not find a consistent estimate across the informal sources. In these cases, we used an average of the
lower and upper bounds of the ransom reports.

Still, we lose about 30 cases due to lack of ransom data. This can have several reasons. First, there never
was a ransom payment, for example, because the crew got rescued. Second, there were no credible ransom
estimates. Thirdly, ship and crew were separated so that the negotiation falls outside of our model.

5 A First Look at the Data

In this section, we present our first empirical results. As a first step, we describe the raw data. We then
present a simple empirical model that allows us to estimate the path of ransom levels controlling with
ship and crew characteristics. Finally, we provide non-parametric estimates. Section 7 will present a full
structural model of pirate negotiations.

5.1 Ransoms and Duration of Hijackings

Figure 1 provides a first look at our data. It shows the ln of ransoms by time of attack. The first thing to
note is that the number of attacks increased considerably in 2005 and then again in 2008. The ln of ransoms
also increased dramatically over the years from about 12 in 2006 to about 15 in 2012, which implies that
ransoms had increased about twentyfold.

In Figure 2, we show that this increase in ransoms went hand-in-hand with an increase in the duration
of captivity. While ships were rarely held for longer than 200 days until 2008 this subsequently changed
with significant share of ships being held for a year or longer afterwards. Two observations are important
here. First, we have ordered hijackings by time of attack so that this pattern cannot be explained by later
releases. Secondly, there were no ships being held after 2013 so that the data is not truncated.

Finally, in Figure 3, we turn towards the relationship between duration and ln(ransoms). There is a
positive association between ransoms and duration which is statistically not significant. However, as we
know from Figure 1 and Figure 2, both ransoms and duration increased in later period. Our idea is that
beliefs held in later period are responsible for both the increase in duration and ransom. In other words, time
of attack is an omitted variable in Figure 3 and is imposing an upward bias on the observed relationship.
In Figure 4, we therefore show the same relationship controlling for time of attack. The result is a striking
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Figure 1: Ransoms and Time of Attack

turnaround of the relationship. Duration and ransoms are now negatively correlated and this relationship is
statistically significant.

These patterns can be explained by a model in which pirates were updating their beliefs about the
distribution of valuations throughout the years and adjusted their asking price upwards. This led to both
longer negotiations on average and higher ransoms. Holding beliefs fixed, a negative relationship between
ransoms and duration arises, as predicted by dynamic bargaining theory.

The main concern with this view from an empirical perspective is that ship and crew characteristics
changed over the years. Put differently, the increase in ransoms could be explained with larger or more
valuable ships being captured in 2010 than in 2006. Indeed, the news shock surrounding the capture of the
Sirius Star in November 2008, for example, suggests that the attack on a huge oil tanker was regarded an
anomaly. In what follows we therefore provide an empirical strategy to estimate how the share of the surplus
the pirates were able to extract was changing over time, controlling with how ship and crew characteristics
influence the surplus.

5.2 Separating Ship Value and Negotiation Outcomes

Assume that equilibrium ransoms for ship and crew i take the form

Pi = eκi × eαXi+εi (1)

where eκi is the share of ship value that is captured by pirates in the negotiation, Xi are ship and crew
characteristics and εi is an iid normal error. If we take ln on both sides we get

lnPi = κi + αXi + εi (2)

so that under the assumption E [εi] = 0 we can derive a proxy for the pirate share, κi, from

κ̂i = lnPi − α̂Xi, (3)
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Figure 2: Captivity Duration and Time of Attack

Figure 3: Ransoms and Duration Raw Data

i.e. to use the residuals of an OLS regression of logPi on characteristics Xi. This will, of course, not be
correct for each observation but it will allow us to study κi indirectly, for example, by looking at moving
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Figure 4: Ransoms and Duration (controlling for time of attack)

averages of κ̂i.
As a first step, we regress lnPi on Xi, several specifications are reported in Table 1. The results indicate

that the single most important determinant of ransoms is ship size (in tonnage). In column 2 we introduce
10 ship type dummies. We find very stark difference across ship types. Bulk carriers, chemical tankers and
yachts command about 3 times the ransom than fishing vessels, for example. Crew size matters critically as
well. For every crew member ransoms rise by about 3 percent. In addition, we find that different nationalities
command different ransom amounts. Western European crew, for example, raise the ransom amounts by 11
percent more than other crew.

Our favorite specification is a saturated model in column 4 with a full set of ship type and crew nationality
dummies. This model explains about one half of the variation in ln(ransoms). In column 5, we show that
ship age, which we have for only 126 observations, is not significant when added to this model.10 In what
follows, we use the residuals κ̂i from column 4 of Table 1. These are plotted in Figure 5. The striking feature
of rising ln(ransoms) translates directly to a rising share captured by pirates, κ̂i. In other words, while there
is some evidence that pirates attacked bigger and more valuable ships this alone cannot explain the drastic
rise in ransoms over this period.

In Figure 6, we show rolling averages of κ̂i and duration. This reveals an interesting comovement of these
two variables that can be roughly divided in three periods. In the first period until 2008 both duration and
ransoms were fairly stable. In 2008 the average ransom increases, first drastically and than at a slower (ln)
rate. Duration stay stable first but then increases dramatically after January 2010 and levels off in 2011.
These patterns suggest dividing the time horizon into three periods. Period 1 lasted until 2008, period 2
started January 2008 and lasted until December 2009. Period 3 started January 2010 and lasted until the
last release.

The increase of κ̂i in period 1 indicates that pirates captured an increasing share of ship and crew values.
At first this did not increase duration significantly. However, in period 2 average duration increased. This
is consistent with the idea that pirates had changed their strategy and increased their initial demand. This

10We also experimented with functional form assumptions regarding ship size and crew size. Results are robust to this.
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Table 1: Explaining Ship Values

(1) (2) (3) (4) (5)
VARIABLES ln(ransom) ln(ransom) ln(ransom) ln(ransom) ln(ransom)

shipsize 1.46e-05*** 8.98e-06*** 5.98e-06** 8.41e-06** 8.04e-06**
(3.31e-06) (2.57e-06) (2.77e-06) (3.23e-06) (3.55e-06)

crewsize 0.0452*** 0.0336** 0.0320** 0.0229 0.0207
(0.0136) (0.0164) (0.0152) (0.0255) (0.0298)

western european crew 0.110***
(0.0301)

shipage -0.0114
(0.0137)

ship type dummies no yes yes yes yes
crew count by nationalities no no no yes yes
Observations 138 138 138 138 126
R-squared 0.205 0.397 0.425 0.458 0.342

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. ”Western european” are crew from
the UK, Ireland, Denmark, Spain, Germany, Italy, Greece, Spain, Norway and the Netherlands.

Figure 5: Estimate of Pirate Share and Time of Attack

change in strategy led to higher ransom amounts and higher duration. In 2011, asking prices stabilized and
with it duration. This suggests a stabilization of pirate strategy/beliefs in this period.

5.3 Separating Out Beliefs and Negotiation Rounds

We now use the previous analysis and move one step into controlling for pirate beliefs. We can do this in
two different ways. First, we can use past values of κ̂i as a proxy for the belief environment. Second, given
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Figure 6: Rolling Averages of Duration and Kappa

the clear patterns across time, we can focus on sub-periods and assume that beliefs were constant within the
period. This allows us to focus on the relationship between duration and ransom holding beliefs constant.

We first proxy beliefs by calculating rolling averages of κ̂i and plugging these back into the regression
of (2). We do this by using a rolling average of 30 attacks of κ̂i in a regression similar to Table 1. The
structure of the data complicated this step slightly. Note that capture often lasted longer than 100 days so
that other ships were released during the negotiation process. This means we need to make an assumption
regarding the influence of the new information contained in releases. As a default, we assume that pirates
only use the information available at the time of capture, i.e. we calculate the rolling average of releases and
use the average that prevailed when pirates captured a ship. An alternative is to use the rolling average at
the time of release. We report results using the rolling average at time of capture in Table 2 and report the
alternative in appendix Table A2.

In Table 2, Column (1) shows the same regression as Table 1 column (4) but adds the rolling mean of
κ̂i at the time of attack. Our proxy of beliefs enters positively, is significant and economically important.
Ransoms increase by more than 1 percent if the average κ̂i increases by 1 percent. In column (2) we control
for the Baltic Dry Index. This is a common measure of the shipping demand which enters positively but
does not affect the role of the mean significantly. Interestingly, the relationship between ransoms and the
past mean also does not change if we control for the two most recent releases κ̂i in column (3). This indicates
that it is not a short term movements in κ̂i that are driving ransoms but the mid-term movements. This is
consistent with the idea that it is slow-changing pirate beliefs which are driving the share that pirates can
extract in the ransom negotiation. In column (4) we control for the maximum of κ̂i at the time of attack.
This enters positively and affects the coefficient of the mean somewhat. This could imply that pirates build
beliefs not only with the mean but put special attention to outliers towards the top of the distribution.
However, in appendix Table A2 we show that the max does not have a robust impact in that case. Columns
(4) and (5) show that duration is also positively correlated with our proxy for beliefs, irrespective of whether
we control for ship characteristics or not.

As an alternative of controlling for beliefs we assume that beliefs and strategies indeed followed the three
stages suggested by the data (before 2008, 2008-2009, after 2009) each with its own set of pirate beliefs
Ψi which we then hold constant within the period. This allows us to focus on the relationship between
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Table 2: The Role of Pirate Beliefs

(1) (2) (3) (3) (4) (5)
VARIABLES ln(ransom) ln(ransom) ln(ransom) ln(ransom) duration duration

mean kappa 1.359*** 1.478*** 1.174*** 0.545** 82.64*** 94.54***
at time of capture (0.137) (0.152) (0.208) (0.225) (20.18) (30.00)

baltic dry index 6.99e-05*
at time of capture (3.91e-05)

kappa of last release 0.0160
(0.120)

kappa two releases ago 0.168
(0.131)

max kappa 0.601***
at time of attack (0.156)

ship value controls yes yes yes yes no yes
crew value controls yes yes yes yes no yes

Observations 138 138 136 138 138 138
R-squared 0.751 0.760 0.753 0.779 0.133 0.315

*** p < 0.01, ** p < 0.05, * p < 0.1. “mean kappa at the time of capture” is the rolling average over 30 releases prior
to the time of attack.

duration and ransom under constant pirate beliefs. Figure 7 and Figure 8 highlight these three periods in
the scatterplots of κ̂i and duration.11

Call the three periods discussed in the previous section Ψi ∈ {Ψ1,Ψ2,Ψ3}. As an additional simplification
we divide duration into brackets and assume that each of these duration brackets represents one round of
negotiations n. We assume 4 brackets: 0-150 days, 151-300 days, 301-450 days and 450+ days. This allows
us to estimate a regression of the form

logPi = κi (ni,Ψi) + αXi + εi

where κi (ni,Ψi) is represented by a separate dummy for each combination of negotiation duration brackets
ni and periods Ψi. Since there are no observations with 3 or 4 rounds in the first period and no observations
with 4 rounds in the second period we only estimate two dummies for the first period and three for the
second.12 The results are reported in Table 3. We exclude the dummy for (ni = 1,Ψ3). All other coefficients
are negative. This means that the highest share extracted by pirates was in the period after 2009 and
in negotiations that lasted less than 150 days. The general pattern from these estimates is clear. Across
periods the pirate share κi (ni,Ψi) increases. Negotiations in the first period that also lasted less than 150
days paid about 1/17th of what they paid in the third period (ln(1/17) = −2.83). Even in the second period
negotiations that lasted less than 150 days demanded significantly less ransom, about 1/3, than they did in
the third period.

11In Figure A1 we show that this is roughly consistent with a trend-break analysis conducted on the data in Figure 4. The
graph shows a positive trend break for the period around in 2008 and a negative trend break around 2010.

12The exception is an extreme outlier in the first period with n = 4 which we recode to n = 2.
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Figure 7: Duration Three Periods

Figure 8: Kappa Three Periods
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Table 3: Estimate of Pirate Share by Duration and Period

(1)
VARIABLES ln(ransom) number of observations

n=1, Psi1 -2.828*** 17
(0.313)

n=2, Psi1 -4.129*** 5
(0.532)

n=1, Psi2 -1.062*** 56
(0.184)

n=2, Psi2 -0.944*** 5
(0.301)

n=3, Psi2 -1.266** 3
(0.553)

n=1, Psi3 (omitted) 24
n=2, Psi3 -0.154 17

(0.258)
n=3, Psi3 -0.315 5

(0.535)
n=4, Psi3 -1.303 6

(0.940)
ship value controls yes
crew value controls yes
Observations 138
R-squared 0.831

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, *
p < 0.1

In addition, there is some evidence for a falling pirate share with a rise in n. While this pattern is not
statistically significant within periods it is present in the point estimates for all periods. This is at least
suggestive of a screening method used by the pirates.

Table 3 also reports the distributions of ni for the three periods Ψ1,Ψ2 and Ψ3. A clear pattern is that
the fraction of negotiations with multiple rounds increased with the initial prices asked by the pirates.

6 Theoretical Investigation

6.1 A Model of Sequential Negotiations

Below, we introduce a model of sequential negotiations with the feature that negotiations are publicly
observed by the participants of subsequent negotiations. Each negotiation is a dynamic bargaining game
with one-sided asymmetric information, in which only the uninformed player is making offers.

Consider discrete time periods t = 0, 1, 2, .., and assume that there is K ∈ Z++ such that at each period
nK (n = 0, 1, ...) a buyer and a seller are drawn to be engaged in dynamic bargaining game (negotiation) n.
To simplify the analysis, we assume the following:

• K is large enough such that, in equilibrium, each negotiation ends before the next game starts (the
existence of such K is guaranteed in our game), and

• no buyer or seller participates in more than one negotiation, so that players do not care about how the
outcome of their negotiation impacts future negotiations.13

13In our application, this approximates the situation where for any given ship owner, the probability of being hijacked multiple
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Each negotiation n is for a unit of a non-divisible good, for which the seller’s valuation is commonly

known to be 0, and the buyer’s valuation Xn
i.i.d.∼ F0 is the buyer’s private information. The distribution F0

is itself drawn before t = 0 from a collection of distributions F . We assume that there is a commonly known
prior distribution over possible valuation functions in F , and the realized F0 is not observed by sellers.14 We
assume that the distributions in F :

• have a common support [v, v], with 0 < v < v, and

• exhibit continuous density functions taking values in [d, d], with d > 0.

Starting at period nK, the seller in negotiation n makes a price offer to the buyer at every period until an
offer is accepted. Rejection takes the game to the next period. Parties are risk-neutral and discount future
payoffs using common discount factor δ ∈ (0, 1). Each negotiation in our model is then equivalent to the
dynamic monopoly game analyzed by Gul et al. (1986) if the probability that the good is sold in each period
in our model is interpreted as the fraction of consumers served in that period in the dynamic monopoly
game.

All actions taken in each negotiation are publicly observed. This is equivalent to only observing the price
agreed in each negotiation if the sequence of offers is common knowledge, which is generically the case in
equilibrium as Gul et al. (1986) shows that the sequence of offers is unique and deterministic.

6.2 Learning the True Distribution of Valuations

6.2.1 Finite Set of Ordered Distributions

In this section, we assume that F is a finite set and that the distributions in F are ordered according to
strict first-order stochastic dominance (“FOSD ordering”): for any Fk, Fk′ ∈ F , either Fk(v) > Fk′(v) for
all v ∈ (v, v), or Fk(v) < Fk′(v) for all v ∈ (v, v). We provide a sufficient condition under which sellers
eventually learn F0, in the sense that as the number of observed negotiations goes to infinity, the probability
sellers assign to F0 converges to 1 in probability. All proofs are provided in the Appendix.

Our main learning result is that, as long as the seller’s first offer in each negotiation is bounded away
from v, pirates’ beliefs will converge in probability to the true distribution F0. Let fd and Fd denote the
density and c.d.f. of the distribution in F dominated by all other distributions in F , and let pn(G) denote
the probability placed by sellers on distribution G at the start of negotiation n.

Proposition 1. Suppose F satisfies FOSD ordering. If maxx∈[v,v]{[1 − Fd(
x−δv
1−δ )]x + δFd(

x−δv
1−δ )v} > v,

which is guaranteed if vfd(v) < 1, then as n → ∞, pn(Fk)
pn(F0)

P→ 0 for all Fk ∈ F\{F0}.

We prove Proposition 1 by examining the expected log likelihood ratio between distributions Fk and
F0 for Fk ∈ F\{F0}, computed using the outcome of a negotiation, and where the expectation is taken
using F0. First, we show that if, for any negotiation, there is a negative upper bound on this expectation,
then Proposition 1 is established. We then observe that, given the strict FOSD assumption, such a bound
is guaranteed by the existence of ε > 0 such that, for every negotiation n, there exists a threshold θn ∈
[v + ε, v − ε] such that a buyer with Xn > θn would accept a different offer than a buyer with Xn < θn in
negotiation n. Finally, we show that this is satisfied as long as vfd(v) < 1: intuitively, if v and/or f(v) is
large, then the seller may find it optimal to guarantee a first-period sale by demanding only v, in which case
no learning can occur.

Let s∗ be the seller’s optimal sequence of offers given the true distribution F0. The next result shows
that the sequence of seller offers converges in probability to s∗ when the latter is unique, which is generically
the case (Gul et al., 1986).

times is low, while for pirates, the informational value of a single negotiation for learning about future hijacked ships’ values is
low.

14Whether buyers observe F does not impact our results.
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Proposition 2. Generically, s∗ is unique. In that case, if the condition for Proposition 1 is satisfied, then
the seller’s equilibrium sequence of offers in negotiation n, denoted sn, converges in probability to s∗ as
n → ∞.

Given the assumption that valuation distributions have well-defined densities, the seller’s expected profit
is continuous in the sequence of offers. Thus, Proposition 2 implies the following.

Corollary 1. Generically, if the condition for Proposition 1 is satisfied, the seller’s expected profit in nego-
tiation n converges in probability to the expected profit she would attain if she knew F0 as n → ∞.

6.2.2 Infinite Set of Ordered Distributions

Now suppose that the set of distributions F is infinite. Proposition 3, combined with the strict FOSD
assumption, provides conditions under which the sellers’ belief becomes arbitrary concentrated around the
true distribution F0 in probability.

Given η > 0 and a closed interval A ⊂ [v, v], let Gη,A = {Fk : maxx∈A |Fk(x)− F0(x)| ≤ η} be the set of
distributions whose c.d.f. is within η of that of the true distribution F0 in A. As in the previous section, let
fd denote the density of the distribution in F dominated by all other distributions in F .

Proposition 3. Suppose F satisfies FOSD ordering, maxx∈[v,v]{[1 − Fd(
x−δv
1−δ )]x + δFd(

x−δv
1−δ )v} > v, and

that, for any η > 0, the prior places positive probability on the set of distributions Gη,[v,v]. Then there exists
a closed interval A ⊂ [v, v] such that as n → ∞, for any η > 0, the posterior probability on G\Gη,A after n
negotiations converges to 0 in probability.

6.2.3 Finite Set of Non-Ordered Distributions

We return to the assumption that F is finite, but relax the assumption that the distributions are ordered
according to FOSD. Instead, we assume:

1. the c.d.f.’s of any two distributions in F do not meet at more than one point in the open interval (v, v),
and

2. for every distribution F with density f in F , v f(v)
1−F (v) is strictly increasing in v.

Condition 1 guarantees that, in a negotiation, some learning occurs in expectation as long as the seller’s
optimal offer sequence includes at least two offers above v. Condition 2 allows us to derive a tractable
condition under which this is guaranteed; it is satisfied by any distribution with increasing hazard ratio.

Proposition 4. Suppose F satisfies conditions 1 and 2, and that the density f of each distribution in F
satisfies vf(v) < 1. Let M be the highest value of vf(v) among all distributions in F and let v∗ be such that

F (v∗) ≥ M for all F ∈ F . If v∗ f(v∗)
1−F (v∗) < 1 for every distribution in F , then as n → ∞, pn(Fk)

pn(F0)

P→ 0 for all

Fk ∈ F\{F0}.

Therefore, as long as the hazard rate is sufficiently low for low v, the seller makes at least two offers
before dropping to v, which ensures continued learning.

In our structural estimation (next section), we assume that the value of ships is lognormally distributed,
conditional on observable ship characteristics. We show that truncated lognormal distributions satisfy con-
ditions 1 and 2.

Proposition 5. Suppose every distribution in F is a lognormal distribution truncated at v and v. Then F
satisfies conditions 1 and 2.
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7 Structural Estimation

7.1 Econometric Model

Here we use the model framework from the previous section for structural estimations to assess the amount
of learning. The model we use is similar to the one in Ambrus et al. (2018) (from now on ACS), with some
differences described below.

We assume that the buyer’s valuation of ship i with time in captivity t has the following form

vbit(t) = e−rti−xti+αXieZi

where Zi is truncated normal N(µ, σ2)15, Xi is a vector of observed characteristics of the ship16, ti denotes
the length of negotiations (the time between the capture of the ship and the ransom payment), x is the
depreciation rate of the ships, and r is the interest rate used for discounting. The interest rate for each
period is calculated by taking the average of the LIBOR during that period. The truncation level Zmin

determines the minimal buyer’s valuation, the normalized value of which at t = 0 is:

vmin = eZmin

The log-likelihood function then is:

L = −N

2
log (

1

N

∑
i

ε̂i)
2 +

∑
i

log Prob[ni] (4)

where ε̂i is defined as
ε̂i = log P (i, ni, ti)−αXi + xti − log pni

Here pni
is the model predicted normalized equilibrium price, and Prob[ni] is the predicted probability that

negotiations end at round ni. Variable P (i, ni, ti) is the observed ransom of ship i. Parameters are estimated
via Maximum Likelihood. For a given value of (µ, σ), we calculate the model predicted price pni and then
estimate α by regressing log P (i, ni, ti) + xti − log pni

on X. Depreciation, x, is fixed exogenously to 0.20
to be in line with estimates of depreciation ranging from 13% − 30%.17 Lastly, we assume that bargaining
opportunities arise from a Poisson process with an average time between periods of 60 days. Thus, the
Poisson process has parameter λ = 365

60 .
In order to simplify computations, we divide the data into three periods, within which beliefs about the

parameters do not change, denoted µi for i = 1, 2, 3. Instead, updating occurs across periods. Lastly, for
our first specification we restrict σ to have correct beliefs. Intuitively, this means the standard deviation in
log prices is known by the pirates.

Fixing σ to be known by pirates does not meaningfully change our results, however it has a few benefits.
First, interpretability of parameter estimates is much cleaner with only one parameter being updated. Since
moments of the lognormal distribution depend on both µ and σ, even a non-monotonic trend in beliefs
about each parameter could yield monotonic convergence in the moments of the distribution, while this is
impossible with a fixed σ. Secondly, equilibria of the model are more stable with respect to perturbations
in lognormal parameters when one is fixed. Nevertheless, we also present results allowing σ to vary, noting
similar patterns in our results.

15We utilize the lognormal distribution due to its long tails and computational flexibility. The gamma distribution is an
alternative, but more computationally burdensome than the lognormal. Additionally, this is a commonly used distribution in
the auctions literature for valuations of bidders (see for example Hong & Shum (2003).

16X includes: ship size, number of crew members, dummies for various ship types, and dummies for having a crew member
of various nationalities

17These values are obtained from tax authorities. These are likely to be lower bounds, as they are estimates for ships held
by their owners, rather than by pirates, who may not have the same incentive or know-how to perform necessary upkeep.
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7.2 Details of the Estimation

To estimate this model, we formulate the seller as solving a finite period pricing problem. The number of
periods T is set equal to the maximum number of observed periods in the data. As in the Theory section,
we assume the seller chooses a valuation x of buyers to make indifferent each period between buying now
or waiting one more period, given the buyer types who are still considered possible (implying that all buyer
types with valuation above x still considered possible in this period buy the good at this point). In the
empirical model, this can be described as by the valuation which was indifferent in the prior period, which
we denote y. We denote the payoff to the seller from making type x indifferent in period t when y was
indifferent at t− 1 to be v(x, y, t).

Given this, the value function for the seller from having valuations y and below remaining in round t is

V (y, t) := max
0≤x≤y

v(x, y, t)

x∗(y, t) := argmax
0≤x≤y

v(x, y, t)

In period T , v consists solely of the current period’s expected revenue. In prior periods, we must account
for the fact that the seller has a nonzero continuation value if the buyer does not purchase, V (x, t + 1).
Additionally, the probability of purchase is F (x)/F (y) where F is the cdf of buyers’ valuations the seller
uses to form beliefs.

Then, the interim value function takes the form

v(x, y, t) :=



(
1− F (x)

F (y)

)
x, t = T(

1− F (x)

F (y)

)
P (x, t) + β

(
F (x)

F (y)

)
V (x, t+ 1) 1 < t < T

(1− F (x))P (x, t) + βF (x)V (x, y) t = 1

where P (x, t) is the price which will make type x indifferent in period t and β is the seller’s discount
factor. It satisfies the equality

P (y, t) = (1− δ)y + δP (x∗(y, t+ 1), t+ 1) (5)

with δ being the buyer’s discount factor.18

7.3 Results of the Structural Estimation

Parameter estimates from maximizing (4) are shown in Table 4.19

Table 4: Parameter Estimates with 60 Day Period

Parameter λ µ̂1 µ̂2 µ̂3 µ̂0 σ̂ x

Estimate 6.08 10.69 12.92 14.12 16.10 1.23 0.20
(-) (0.19) (0.22) (0.23) (0.23) (0.02) (-)

18In practice, we approximate the V terms using cubic splines and the Computational Economics toolbox for Matlab.
The likelihood function is minimized using the GlobalSearch algorithm in the Optimization Toolbox for Matlab. This tries

a variety of starting points for quasi-Newton optimization algorithms. We compared results to more sophisticated algorithms,
such as Simulated Annealing and Genetic Algorithms, finding similar results.

19Standard errors are calculated using asymptotic variance of MLE and are shown in parentheses. (-) indicate the value was
calculated outside the MLE routine.
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Two clear trends jump out. First, beliefs about the µ terms converge monotonically to the true values
over time, suggesting pirates do indeed learn. Secondly, learning appears to be a relatively slow phenomenon.
Even after many years, the beliefs of pirates differs significantly from the truth at 14.12 vs. a true value of
16.10.

We now turn our investigation to how surplus is split in this game. There are four values of interest here.
First, there are the shares of surplus which go to the buyer and seller, respectively. However, we also want
to know what portion of surplus is lost to depreciation and discounting. In this setting, ships physically
degrade over time, lowering the total surplus accrued when an agreement is reached. In addition, there is
some loss of surplus due to agreement not being reached immediately.

Table 5 shows very intuitive results. The ”Predicted” lines illustrate the surplus split given pirates’ esti-
mated beliefs. In Stage 1, the buyers receive a large share of the surplus. Because sellers vastly underestimate
µ0, they price very low and sell the items very early in the bargaining game. This leads to very little loss of
depreciation, while the buyers are happy to accept prices far below their willingness-to-pay. Over time, as
sellers beliefs converge to the truth, we see that they achieve a larger and larger share of the surplus.

Additionally, the ”Benchmark” lines show what the split of surplus would have been had pirates had
correct beliefs of (µ0, σ). As we can see, the pirates miss out on a substantial share of surplus by having
incorrect beliefs. However, a large percentage of total valuation is lost to depreciation when sellers have
correct beliefs, as they accurately price discriminate across bargaining rounds, leading to a substantially
longer time to agreement.

Lastly, we consider the counterfactual case of what would have occurred had buyers behaved as though
they had valuations (µ1, σ). This could occur because there is a liquidity constraint on the part of buyers,
restricting them from paying their full valuation. We do so by assuming that buyers agree to the sale price
in each bargaining round with probability equal to the seller’s expectation.

Table 5 shows that buyers lose a substantial share of surplus in the counterfactual scenario, which might
seem unintuitive, as the prices they achieve are much lower. However, because the buyers are behaving as
though they have much lower valuations than they do, they purchase with much lower probability in early
rounds of bargaining. This means that gains from price decreases are lost to depreciation in many cases,
partly due to the high amount of depreciation of ships between periods. 20

Table 5: Split of Surplus with 60 Day Period

Seller Buyer Discount Depreciation

Stage 1
Predicted 0.15 19.95 0.16 0.66
Benchmark 3.08 10.22 0.84 3.74
Counterfactual 0.01 13.29 1.01 3.40

Stage 2
Predicted 1.03 18.88 0.15 0.79
Benchmark 3.08 10.28 0.66 3.83
Counterfactual 0.13 13.08 0.78 3.45

Stage 3
Predicted 2.08 16.86 0.10 1.46
Benchmark 3.07 10.08 0.26 4.03
Counterfactual 0.42 12.24 0.29 3.55

Lastly, we examine the fit of our model. For all this, a few important definitions are listed below.

• Predicted: The values the model predicts

• Observed: What we see in the data

20The first 5 periods are displayed here because they make up the vast majority of the data. That said, some observations
do extend past this. Figures displaying the comparisons are found in the appendix.
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• Benchmark: What the model would predict if pirates held beliefs (µ0, σ)

Table 6 looks at normalized prices (that is, normalizing for attributes specific to the ship). Two facts
jump out. First, the predicted prices are pretty good overall. There are some particular rounds where we
do relatively poorly, but they generally have very few observations. Second, the benchmark values are very
high, which is consistent with the increase in µ between pirates’ beliefs and the true values.

Table 6: Predicted Offers and Observed Offers with 60 Day Period

Offer Price (in 106) Offer(n=1) Offer(n=2) Offer(n=3) Offer(n=4) Offer(n=5)

Stage 1
Predicted 0.15 0.10 0.09 0.08 0.07
Observed 0.18 0.40 0.07 0.10 -
Benchmark 34.65 23.45 20.17 17.65 15.63

Stage 2
Predicted 1.43 0.99 0.86 0.75 0.67
Observed 1.18 1.16 1.67 1.60 -
Benchmark 34.39 23.74 20.58 18.12 16.13

Stage 3
Predicted 4.65 3.33 2.93 2.61 2.35
Observed 3.98 3.96 3.18 3.02 2.97
Benchmark 33.71 24.13 21.22 18.92 17.04

Table 7 shows that there does not appear to be a systematic error. Some purchase probabilities are
overestimated, while others are underestimated, but there’s no clear pattern to the errors and they are
reasonably small. Again, the benchmark values are very different, due to the different pricing path.

Average Ransoms and Durations are in Table 8 and Table 9. They exhibit similar characteristics to the
offers and purchase probabilities. Average duration is perhaps the worst fitting of all measures but does not
have any systematic error. This suggests prices are more influential in the likelihood function than purchase
probabilities.

7.4 Allowing Beliefs About σ to Vary

Here, we estimate the parameters of a model where we allow pirates’ beliefs about σ to vary by period.
Formally, we still divide the data into three separate periods, i = 1, 2, 3 and pirates have beliefs (µi, σi)
about the true parameters (µ0, σ0). Again we assume that there is no updating within a period, and all
updating occurs between periods.

The estimates from this specification are in Table 10.
The first observation here is that there is no clear pattern in the convergence of the σ terms. However,

the µ terms converge monotonically over time. Additionally, the sellers’ beliefs about σ in the final period
are closest to the true values. This pattern could be rationalized as the sellers overestimating the variation
in buyer valuations after the first period, but correcting these beliefs after the second period. This suggests
that learning this feature of the value distribution is complicated and does not always move beliefs closer to
the truth in any given step, but over a longer time horizon, there is progression towards the truth.

As in the case with one σ value, we examine the model fit, which appears to be quite good. Comparing the
Predicted and Observed lines in Table 11 – Table 14 we see that the two line up reasonably well. Additionally,
comparing to the Benchmark case, where sellers have correct beliefs, it is clear there are substantial financial
losses to the sellers by underestimating the buyers’ valuation distributions, though purchase would occur
much more slowly.
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Table 7: Accumulated Purchase Probabilities with 60 Day Period

Accumulated Agreement Prob(n≤1) Prob(n≤2) Prob(n≤3) Prob(n≤4) Prob(n≤5)

Stage 1
Predicted 0.97 0.99 0.99 1.00 1.00
Observed 0.59 0.77 0.91 0.95 0.95
Benchmark 0.01 0.02 0.03 0.04 0.06
Counterfactual 0.01 0.03 0.05 0.07 0.10

Stage 2
Predicted 0.54 0.68 0.76 0.81 0.85
Observed 0.43 0.83 0.93 0.95 0.95
Benchmark 0.01 0.02 0.03 0.04 0.06
Counterfactual 0.01 0.03 0.05 0.07 0.10

Stage 3
Predicted 0.20 0.31 0.40 0.47 0.53
Observed 0.09 0.25 0.52 0.70 0.80
Benchmark 0.01 0.02 0.03 0.04 0.06
Counterfactual 0.01 0.03 0.05 0.08 0.10

Table 8: Average Ransoms with 60 Day Period

Average Normalized Random (in $106)

Stage 1 Stage 2 Stage 3

Predicted 0.15 1.09 2.34
Observed 0.19 1.20 3.18
Benchmark 4.31 4.26 4.15

Table 9: Average Duration with 60 Day Period

Average Duration (Days)

Stage 1 Stage 2 Stage 3

Predicted 63.11 171.66 367.50
Observed 128.18 115.00 252.86
Benchmark 408.98 400.01 379.74

Table 10: Parameter Estimates with 60 Day Period, Varying σ

Parameter λ µ̂1 µ̂2 µ̂3 µ̂0 σ̂1 σ̂2 σ̂3 σ̂0 x

Estimate 6.08 11.10 12.13 14.87 16.76 1.40 1.59 1.21 1.06 0.20
(-) (0.20) (0.16) (0.24) (0.22) (0.03) (0.03) (0.04) (0.10) (-)
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Comparing average duration of bargaining games and the average ransoms paid yields similar comparisons
as purchase probabilities and offers. The predictions of the model line up well with the observed distribution
of the data, both in terms of normalized prices and in terms of average durations. Again, examining the
benchmark case shows that sellers could achieve much higher revenue if they had correct beliefs, but would
do so at the expense of taking extra bargaining rounds in expectation.

Table 11: Predicted Offers and Observed Offers with 60 Day Period, Varying σ

Offer Price (in $106) Offer(n=1) Offer(n=2) Offer(n=3) Offer(n=4) Offer(n=5)

Stage 1
Predicted 0.42 0.27 0.23 0.19 0.16
Observed 0.35 0.75 0.14 0.20 -
Benchmark 39.18 28.51 25.27 22.71 20.61

Stage 2
Predicted 2.30 1.52 1.26 1.05 0.87
Observed 2.11 2.07 2.53 3.06 -
Benchmark 39.49 29.07 25.88 23.35 21.27

Stage 3
Predicted 9.37 6.73 5.93 5.30 4.78
Observed 8.36 7.97 5.80 5.67 5.51
Benchmark 40.61 30.32 27.21 24.72 22.66

Table 12: Accumulated Purchase Probabilities with 60 Day Period, Varying σ

Accumulated Agreement Prob(n≤1) Prob(n≤2) Prob(n≤3) Prob(n≤4) Prob(n≤5)

Stage 1
Predicted 0.97 0.99 0.99 1.00 1.00
Observed 0.59 0.77 0.91 0.95 0.95
Benchmark 0.01 0.03 0.05 0.08 0.10
Counterfactual 0.07 0.12 0.17 0.22 0.26

Stage 2
Predicted 0.58 0.74 0.81 0.86 0.89
Observed 0.43 0.83 0.93 0.95 0.95
Benchmark 0.01 0.03 0.05 0.07 0.10
Counterfactual 0.07 0.12 0.17 0.21 0.26

Stage 3
Predicted 0.15 0.27 0.36 0.44 0.50
Observed 0.09 0.25 0.52 0.70 0.80
Benchmark 0.01 0.03 0.05 0.07 0.09
Counterfactual 0.06 0.12 0.16 0.21 0.25

As suggested in the earlier tables and similar to the case with a single σ value, Table 15 shows that
buyers are gaining the largest share of the surplus in the current setting. This is due to the sellers’ low
beliefs about valuations, causing bargaining to end earlier and at lower prices than would occur if sellers’
had correct beliefs.

Considering the counterfactual of what would happen if buyers behaved as though they had valuations
drawn from (µ1, σ1), we can see the counterfactual surplus split in Table 15 is similar to that in the case
with one σ value. Again, buyers would accrue a smaller share of the surplus as they take longer to purchase,
offsetting the financial gains they would make by achieving lower prices. Given the high value of depreciation,
this is rather unsurprising.

Finally, we evaluate whether allowing beliefs about σ to vary over time improves our model predictions.
To do so, we measure fit using the mean squared error between model predictions and observations. The
result is in Table 16.
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Table 13: Average Ransoms with 60 Day Period, Varying σ

Average Ransom (in $106)

Stage 1
Predicted 0.42
Observed 0.38
Benchmark 8.03

Stage 2
Predicted 1.80
Observed 2.12
Benchmark 7.94

Stage 3
Predicted 4.65
Observed 6.22
Benchmark 7.73

Table 14: Average Duration with 60 Day Period, Varying σ

Average Duration (Days)

Stage 1
Predicted 63.54
Observed 128.18
Benchmark 446.61

Stage 2
Predicted 142.09
Observed 115.00
Benchmark 440.78

Stage 3
Predicted 387.59
Observed 252.86
Benchmark 427.30

As Table Table 16 shows, there is not a strict ordering of allowing σ to vary versus not using MSE as a
measure. When we allow it to vary, our purchase probabilities have a lower MSE, but prices have a higher
MSE. This suggests that neither is a strictly better modeling strategy here, though this could be due to a
small sample size.

8 Alternative Explanations

In this section, we discuss alternative explanations for the patterns in the data. A first alternative story
would be that not just the beliefs, but the true parameters of the model were changing over time. For
example, it could be possible the distribution of ship and crew values shifted upwards (and possibly spread
out). It is highly unlikely that an almost twentyfold ransom increase could be explained this way given the
number of controls for ship and crew value we introduce.

A second possibility is that broader technological, legal or institutional changes are responsible for the
shift in ransoms. Indeed, it is true that the insurance industry made Somalia a war risk zone in May 2008
which meant that ship owners had to purchase additional insurance from that moment on onwards. Going
back to the scatterplot in Figure 5 and Figure 6 is becomes clear that May 2008 is actually a very reasonable
division line between periods 1 and 2. This cannot explain, however, the change from the periods 2 to 3, i.e.
from 2008-2009 to 2010 onwards. Also, increases in duration are hard to explain this way.

Another alternative story would be some behavioral explanation, for example, reference-based utility
for the pirates, with the reference point being the previous maximum price. Note here that, according to
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Table 15: Split of Surplus with 60 Day Period, Varying σ

Seller Buyer Discount Depreciation

Stage 1
Predicted 0.40 31.66 0.26 1.05
Benchmark 5.84 15.82 1.21 5.74
Counterfactual 0.06 22.51 1.28 4.34

Stage 2
Predicted 1.69 30.08 0.24 1.26
Benchmark 5.83 15.89 0.96 5.93
Counterfactual 0.31 22.24 1.00 4.45

Stage 3
Predicted 4.05 25.41 0.18 2.82
Benchmark 5.77 15.47 0.39 6.35
Counterfactual 1.52 20.36 0.37 4.71

Table 16: Mean Squared Errors of Prediction with Fixed σ and Varying σ

Measure Fixed σ Varying σ

Price 227.34 238.34
Purchase Probabilities 1.05 0.98

Table 2, ransoms were not affected by the immediately preceding ransom outcome when controlling with the
rolling average of preceding ransoms, which is evidence against a reference-point driven model.

There could also be learning on the part of ship owners. The observed patterns clearly suggest that over
time pirates could retain a significantly higher share of the surplus. This suggests that learning on their part
was the important contributor for the observed patterns.
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A Appendix

A.1 Table A1, Table A2 and Figure A1

Table A1: Summary Statistics

Panel A: Main Variables

Variable Obs Mean Std. Dev. Min Max

ransom (in USD) 138 2630191 2438301 24000 1.35E+07
duration (in days) 138 139.4565 147.9072 4 839
ship tonnage 138 16471.83 27950.35 20 162252
number of crew 138 19.73913 7.558342 2 43
number of crew from western europe 138 0.891304 2.909047 0 22
baltic dry index at time of attack 138 3178.094 2383.945 676 11465
ship age 126 17.10317 12.0365 0 60

Panel B: Ship Types

ship type Frequency Percent

Bulk Carrier 31 22.46
Chemical and Oil Tanker 40 28.99
Container 4 2.9
Fishing Vessel 15 10.87
General Cargo 35 25.36
Yacht 6 4.35
Other 7 5.07

Panel C: Crew Nationalities with more than 10 Hijacked

Algerian Bangladeshi Bulgarian Burmese Chinese Egyptian French Filipino Georgian Indian Indonesian Iranian

Kenyan Malaysians Nigerian North-Korean Pakistani Panama Romanian Russian Spanish Srilankan
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Table A2: The Role of Pirate Beliefs (by release)

(1) (2) (3) (3) (4) (5)
VARIABLES ln(ransom) ln(ransom) ln(ransom) ln(ransom) duration duration

mean kappa at time of release 1.271*** 1.295*** 1.147*** 1.118** 88.68*** 105.5***
(0.132) (0.131) (0.212) (0.459) (17.90) (27.71)

baltic dry index at time of release 1.60e-05
(5.65e-05)

kappa of last release 0.00389
(0.126)

kappa two releases ago 0.125
(0.139)

max kappa at time of release 0.112
(0.303)

ship value controls yes yes yes yes no yes
crew value controls yes yes yes yes no yes

Observations 138 138 136 138 138 138
R-squared 0.751 0.752 0.749 0.752 0.183 0.365

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. “mean kappa at the time of release” is the rolling
average over 30 releases prior to the time of release.

Figure A1: Clear Trend-breaks in the Data
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A.2 Proofs

Proof of Proposition 1: Let Pn be the finest partition of [v, v] such that negotiation n reveals the element
of Pn that contains Xn. This is the partition of [v, v] formed with the cutoffs corresponding to the values at
which the buyer is indifferent between accepting and rejecting each offer in negotiation n.21

Let Cn be the element of Pn such that Xn ∈ Cn, and let Fk(Cn) denote the probability that a random
variable drawn according to Fk is in Cn. We start with Lemma 1.

Lemma 1: Suppose that there exists c > 0 such that for all k ̸= 0 and Pn, EF0
[log Fk(Cn)

F0(Cn)
|Pn] < −c < 0.

Then pn(Fk)
pn(F0)

P→ 0 as n → ∞.

Proof: Let Yn = log Fk(Cn)
F0(Cn)

+ (−EF0
[log Fk(Cn)

F0(Cn)
|Pn] − c), so that E[Yn|Pn] = −c for all Pn. Note that

log Fk(Cn)
F0(Cn)

is bounded by log d − log d, which implies that Yn and V ar(Yn) are also bounded. Claim 1

establishes that V ar(
∑

n Yn) behaves as though the Yn were independent.

Claim 1: Consider a sequence of random variables Y0, ..., YT with finite variances. For each t = 0, ..., T ,
let yt be the realization of Yt, and let ht = (y0, ..., yt−1) be the history of realizations; let h0 be the empty
history. Given history ht, Yt is drawn according to a finite distribution Ght

t . For each t, assume that every
Ght

t has the same mean; i.e. E[Yt|ht] = E[Yt]. Then:

V ar(

T∑
t=1

Yt) =

T∑
t=1

V ar(Yt).

Proof: This proof proceeds by induction. Suppose that V ar(
∑S

t=1 Yt) =
∑S

t=1 V ar(Yt), which obviously

holds for S = 1. The argument below shows that V ar(
∑S+1

t=1 Yt) =
∑S+1

t=1 V ar(Yt).
We have:

V ar(

S+1∑
t=1

Yt) = V ar(

S∑
t=1

Yt) + V ar(YS+1) + 2Cov(

S∑
t=1

Yt, YS+1) (6)

=

S+1∑
t=1

V ar(Yt) + 2

(
E

[
YS+1

S∑
t=1

Yt

]
− E

[
S∑

t=1

Yt

]
E [YS+1]

)

Note that, letting Pr(hS) be the ex ante probability of history hS :

E

[
YS+1

S∑
t=1

Yt

]
=

∑
hS

[
Pr(hS)

(
S∑

t=1

yt

)
E[YS+1|hS ]

]
(7)

= E[YS+1]
∑
hS

[
Pr(hS)

(
S∑

t=1

yt

)]

= E[YS+1]E

[
S∑

t=1

Yt

]

Plugging 7 into 6 establishes the desired result. □

By Claim 1, as n → ∞, the variance of 1
n

∑n−1
n′=0 Yn′ converges to zero. Thus, by Chebyshev’s Inequality,

1
n

∑n−1
n′=0 Yn′

P→ −c .

21For simplicity, we assume that buyers indifferent between accepting and rejecting an offer do not mix. Note that there is a
zero mass of such buyers.
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Since log Fk(Cn)
F0(Cn)

< Yn, for any −b > −c, Pr
(∑n−1

n′=0 log
Fk(Cn′ )
F0(Cn′ )

< −bn
)
→ 1 as n → ∞. This implies

pn(Fk)
pn(F0)

= p0(Fk)
p0(F0)

exp
[∑n−1

n′=0 log
Fk(Cn′ )
F0(Cn′ )

]
P→ 0. □

It remains to be shown that EF0 [log
Fk(Cn)
F0(Cn)

|Pn] is bounded away from 0 for all possible realizations of

Pn. Assume that each Pn contains at least two cells, and that each cell is a nontrivial interval. Note that

EF0
[log Fk(Cn)

F0(Cn)
|Pn] =

∑
C is a cell of Pn

[logFk(C) − logF0(C)]F0(C). Maximizing this expression subject to∑
C is a cell of Pt

Fk(C) = 1 yields Fk(C) = F0(C) for all C. Thus, EF0
[log Fk(Cn)

F0(Cn)
|Pn] is maximized at k = 0

and has a maximum value of 0. Moreover, by the strict FOSD assumption, EF0
[log Fk(Cn)

F0(Cn)
|Pn] < 0 if k ̸= 0.

Given the previous paragraph, it is sufficient to show that, for all Pn:
(i) the first buyer cutoff v1 in all negotiations is bounded away from v, and
(ii) the lowest buyer type v(x) accepting the last price demanded x exceeding v is bounded away from v.
These conditions guarantee that no sequence of partitions Pn converges to the trivial partition, which,

combined with the finiteness of the family of distributions and the strict FOSD assumption, imply a uniform

negative upper bound for EF0
[log Fk(Cn)

F0(Cn)
|Pn].

Item (ii) is always satisfied: letting the last price demanded exceeding v be x, we must have (1 −
F (v(x)))x + δF (v(x))v ≥ v. Thus F (v(x)) ≤ x−v

x−δv ≤ v−v
v−δv = 1 − (1−δ)v

v−δv . Therefore, v(x) must be at least
1
d

(1−δ)v
v−δv away from v.

In any negotiation, a sufficient condition for the first price demanded to exceed v is maxx∈[v,v]{[1 −
F (x−δv

1−δ )]x+ δF (x−δv
1−δ )v} > v: if the buyer has value v > x−δv

1−δ , then v−x > δ(v− v), so he will accept right
away even if he believes that the next price demanded will be v.

A sufficient condition for maxx∈[v,v]{[1− F (x−δv
1−δ )]x+ δF (x−δv

1−δ )v} > v, since the left-hand side is equal
to v when x = v and the density f is continuous, is for the derivative of the left-hand side to be positive at
x = v, i.e. vf(v) < 1.

Let Fd be the distribution dominated by all others. If maxx∈[v,v]{[1 − Fd(
x−δv
1−δ )]x + δFd(

x−δv
1−δ )v} > v,

then if it were common knowledge that the true distribution is Fd, the seller’s profit πd would exceed v. For
any other distribution F that first-order stochastically dominates Fd, the seller’s equilibrium profit must be
at least πd. This implies that the first price demanded, and therefore the first cutoff v1, is bounded below
by πd > v. Item (i) is therefore satisfied. ■

Proof of Proposition 2: By Gul et al. (1986), the equilibrium price path is generically unique. Suppose
this holds for F0, and suppose that the buyer best responds. Then, given a belief F about the buyer’s type
and a sequence of demand s, the seller’s expected profit π(s, F ) has a unique maximum at s∗ if F = F0.
Moreover, since F0 is non-atomic, π(·, F0) is continuous in the Euclidean metric.

Claim 2 below strengthens Gul et al. (1986)’s finite negotiation length result by providing a uniform
bound on negotiation length in our setting.

Claim 2: In equilibrium, buyer cutoffs satisfy vt+1 < vt as long as vt > v, and negotiations conclude in

at most
⌈

1
(1−δ)vd

⌉
≡ T periods.

Proof: Let zt+2 be the seller’s expected payoff at time t + 2. Because, at t + 1, the seller can always
skip demand t+ 1, and by Gul et al. (1986), the continuation of on-path prices after a given on-path seller
demand is unique, we have:

F (vt)− F (vt+1)

F (vt)
xt+1 + δ

(
F (vt+1)

F (vt)

)
zt+2 ≥ F (vt)− F (vt+1)

F (vt)
xt+2 +

(
F (vt+1)

F (vt)

)
zt+2

[F (vt)− F (vt+1)] (xt+1 − xt+2) ≥ (1− δ)F (vt+1)zt+2
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Note that xt+1 ≤ vt+1 ≤ v + 1
dF (vt+1), and xt+2, zt+2 ≥ v.

Thus [F (vt)− F (vt+1)]
1
dF (vt+1) ≥ (1− δ)F (vt+1)v.

Therefore, if vt+1 > v, F (vt)− F (vt+1) ≥ (1− δ)vd. □

Claim 3 studies the buyer’s best response to an arbitrary (i.e. not necessarily optimal) sequence of seller
demands.

Claim 3: The buyer’s best response to any planned sequence of seller demands x1, x2, ... is given by a
sequence of weakly decreasing cutoffs v1, v2, ...

Proof: The buyer wishes to maximize δt(v − xt), and we need to show that if v > v′, then t ≤ t′, where
t is the time chosen by a buyer with value v, and t′ is chosen by a buyer with value v′.

We have: δt(v − xt) ≥ δt
′
(v − xt′) and δt

′
(v′ − xt′) ≥ δt(v′ − xt).

Adding these gives: δtv + δt
′
v′ ≥ δt

′
v + δtv′.

Thus: v(δt − δt
′
) ≥ v′(δt − δt

′
).

Therefore δt − δt
′ ≥ 0, so t′ ≤ t. □

By Claim 2, for any seller belief, the seller’s optimal demand sequence satisfies s ∈ [v, v]T , a compact set.
Therefore, for any κ > 0, ∃ε(κ) > 0 such that π(s, F0) < π(s∗, F0)− ε(κ) for all s such that |s− s∗| ≥ κ.

Now let two distributions F and G be within γ of each other if |F (x)−G(x)| ≤ γ for all x. Then:
- By Proposition 1, the seller’s belief F converges to F0.
- π(s, .) is Lipschitz continuous, with constant v: by Claim 3, π(s, F ) =

∑
δt−1xt[F (vt−1)−F (vt)], where

v0 = v. Note that the cutoffs vt depend only on s = {x1, ...} (and not on the seller’s belief F ). Therefore, if
|F (x)−G(x)| ≤ γ for all x, |π(s, F )− π(s,G)| ≤ γ(x1 − δT−1v) < γv.

It follows that when |F−F0| < γ and |s−s∗| ≥ κ, we have: π(s, F ) < π(s, F0)+γv < π(s∗, F0)−ε(κ)+γv <
π(s∗, F ) − ε(κ) + 2γv. Thus, if ε(κ) > 2γv, we have π(s, F ) < π(s∗, F ), so that s cannot be optimal given
F . As γ → 0, we can take κ → 0 and still have π(s, F ) < π(s∗, F ) whenever |s − s∗| ≥ κ. This yields
Proposition 2. ■

Proof of Proposition 3: Fix A = [a, b] such that in every negotiation, there is a buyer cutoff in A,
with a > v (feasible by Proposition 1) and b < v (feasible since δ < 1).

Because the distributions are ordered by strict FOSD, for any η > 0, there exists γ(η) > 0 such that
G\Gη,A ⊂ {Fk : minx∈A |Fk(x)− F0(x)| > γ(η)} ≡ Hγ(η),A.

Given η > 0, let Fout ∈ Hγ(η),A and Fin ∈ Gγ,A for some arbitrary γ > 0. Let P be a finite interval
partition of [v, v] with at least one cell boundary within A. Then

EF0

[
log

Fout(C)

Fin(C)
|P,C ∈ P

]
=

∑
C∈P

[logFout(C)− logF0(C)]F0(C)−
∑
C∈P

[logFin(C)− logF0(C)]F0(C) (8)

We start by seeking an upper bound for the first term
∑

C∈P [logFout(C)− logF0(C)]F0(C).
Lemma 2:

∑
C∈P [logFout(C) − logF0(C)]F0(C) ≤

∑
C∈Q[logFout(C) − logF0(C)]F0(C), where Q is

any partition that is coarser than P .
Proof of Lemma 2: Suppose that Q merges two cells of P , denoted C1 and C2. Let xk = Fout(Ck) for

k = 1, 2, and yk = F0(Ck) for k = 1, 2, and let x = x1 + x2. Then∑
C∈P

[logFout(C)− logF0(C)]F0(C)−
∑
C∈Q

[logFout(C)− logF0(C)]F0(C)

= [log x1 − log y1]y1 + [log(x− x1)− log y2]y2 − [log x− log(y1 + y2)](y1 + y2)

Maximizing this concave expression with respect to x1 gives first-order condition

y1
x1

=
y2
x2
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Substituting this condition into the expressives yields a value of 0, so that
∑

C∈P [logFout(C)−logF0(C)]F0(C) ≤∑
C∈Q[logFout(C)− logF0(C)]F0(C). Iterating the merging of cells yields the result. □
Therefore, the maximum value for

∑
C∈P [logFout(C)− logF0(C)]F0(C) is attained when P has two cells,

C1 and C2. To find an upper bound, we maximize

[logFout(C1)− logF0(C1)]F0(C1) + [log(1− Fout(C1))− log(1− F0(C1))](1− F0(C1))

subject to the constraint |Fout(C1)− F0(C1)| > γ. The first derivative of this expression w.r.t. Fout(C1) is

F0(C1)

Fout(C1)
− 1− F0(C1)

1− Fout(C1)

The second derivative is

− F0(C1)

[Fout(C1)]2
− 1− F0(C1)

[1− Fout(C1)]2

The maximum occurs at Fout(C1) = F0(C1), where the second derivative is − 1
F0(C1)

− 1
1−F0(C1)

≤ −4.

Therefore, for small γ(η), the constraint |Fout(C1)−F0(C1)| > γ(η) implies an upper bound on the order of
1
2 (−4)γ(η)2 = −2γ(η)2. For the remainder of the proof, given any η > 0, we fix γ(η) sufficiently small such
that G\Gη,A ⊂ Hγ(η),A and the first term of (8) is bounded above by −1.5γ(η)2.

Clearly, for any P , the second term of (8)
∑

C∈P [logFin(C) − logF0(C)]F0(C) → 0 as γ → 0. Thus,

for any γ(η), there exists γ > 0 such that EF0

[
log Fout(C)

Fin(C) |P,C ∈ P
]
< −γ(η)2 for any Fout ∈ Hγ(η),A,

Fin ∈ Gγ,A and finite interval partition P of [v, v] with at least one cell boundary within A. Since the
prior places positive probability on the set of distributions Gγ,A, by a similar argument as in Lemma 1, the
posterior on G\Gη,A ⊂ Hγ(η),A converges to 0 in probability as the number of observations goes to infinity.
■

Proof of Proposition 4: First, we derive two relations that will be used later. Any initial seller
belief G about values is a convex combination of distributions F ∈ F . Since, for any distribution F ∈ F ,
F (v∗) ≥ vf(v) for all densities f of a distribution in F , it follows that G(v∗) ≥ vg(v), where g = G′.

Moreover, since v∗ f(v∗)
1−F (v∗) < 1 and v f(v)

1−F (v) is increasing, we have v f(v)
1−F (v) < 1 and thus vf(v) < 1 − F (v)

for all v ≤ v∗. Therefore, we obtain vg(v) < 1−G(v) for all v ≤ v∗.
Let the seller’s stream of offers be x0, x1, x2, ... A buyer with valuation v accepts xt if and only if

v − xt ≥ δ(v − xt+1) ⇐⇒ v ≥ (xt − δxt+1)/(1 − δ), so the lowest type accepting xt is vt = xt−δxt+1

1−δ .
The Bellman equation corresponding to the seller’s problem when choosing vt (via the choice of xt) is
V (vt−1) = maxvt{(G(vt−1)−G(vt))xt + δV (vt)}, where G(v−1) ≡ 1. The first-order condition is g(vt)xt =
(G(vt−1)−G(vt))

dxt

dvt
+δV ′(vt). For t = 0, we know from the proof of Proposition 1 that, since vg(v) < 1, the

solution is interior, so the optimum must satisfy the first-order condition: g(v0)x0 = (1−G(v0))
dx0

dv0
+δV ′(v0).

We now evaluate V ′(v0) = (g(v0)− g(v1)
dv1

dv0
)x1 + (G(v0)−G(v1))

dx1

dv0
+ δV ′(v1)

dv1
dv0

.

- If dv1
dv0

= 0, then dx2

dv0
= 0, so dx1

dv0
= 0 (since vt =

xt−δxt+1

1−δ ), in which case V ′(v0) = g(v0)x1.
- If not, then v1 is interior, and:

V ′(v0) = g(v0)x1 − g(v1)x1
dv1
dv0

+ (G(v0)−G(v1))
dx1

dv1

dv1
dv0

+ δV ′(v1)
dv1
dv0

= g(v0)x1 +
dv1
dv0

(−g(v1)x1 + (G(v0)−G(v1))
dx1

dv1
+ δV ′(v1))

= g(v0)x1

where the last line follows from the t = 1 first-order condition. Thus we have V ′(v0) = g(v0)x1.
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Substituting this into the t = 0 first-order condition gives g(v0)x0 = (1 − G(v0))
dx0

dv0
+ δg(v0)x1. Using

x0 = (1− δ)v0 + δx1 gives:

g(v0)(1− δ)v0 = (1−G(v0))(1− δ + δ
dx1

dv0
)

v0g(v0) = (1−G(v0))(1 +
δ

1− δ

dx1

dv0
)

Since g(v) < 1−G(v) for all v ≤ v∗ and dx1

dv0
≥ 0, it must be that v0 > v∗.

The seller’s belief if the first offer is rejected is then G1(v) = G(v)
G(v0)

for v ∈ [v, v0]. Thus, vg1(v) =

v g(v)
G(v0)

< v g(v)
G(v∗) ≤ v g(v)

vg(v) = 1. It follows, again from the proof of Proposition 1, that v1 > v.

Therefore, regardless of the initial belief in a negotiation, the sequence of offers contains two offers above
v, and the finite number of distributions guarantees that they are bounded away from each other and v. The
same argument as used to prove Proposition 1 establishes the result. ■

Proof of Proposition 5: To establish that families of truncated lognormal distributions satisfy condition
1, it is sufficient to show that families of truncated normal distributions satisfy condition 1 since for every
lognormal random variable X, there is a normal random variable Z such that X = eZ . Consider two normal
distributions, F1 and F2, with means µ1 and µ2, and variances σ2

1 and σ2
2 , respectively, and let G1 and G2 be

the distributions obtained by truncating F1 and F2, respectively, at a and b, where a < b. Then the density

of Gi is gi(z) =
1

Fi(b)−Fi(a)
1√
2πσi

e
− (x−µi)

2

2σ2
i . Thus, g1(z)

g2(z)
= F2(b)−F2(a)

F1(b)−F1(a)
σ2

σ1
e

(x−µ2)2

2σ2
2

− (x−µ1)2

2σ2
1 , so that log( g1(z)g2(z)

) is

a quadratic function. It follows that the sign of g1(z)− g2(z) changes either once, in which case G1 and G2

are ordered according to FOSD, or twice, in which case G1 = G2 exactly once in (v, v).
For condition 2, let G be a lognormal distribution (density g) where the underlying normal H (density

h) has mean µ and variance σ2, and let F (density f) be the truncation of G at a and b, where a < b. Then

f(v) = g(v)
G(b)−G(a) and F (v) = G(v)−G(a)

G(b)−G(a) . Thus

v
f(v)

1− F (v)
=

1√
2πσ

e−
(log(v)−µ)2

2σ2

G(b)−G(v)

Letting x = log(v), we have

v
f(v)

1− F (v)
=

1√
2πσ

e−
(x−µ)2

2σ2

H(log b)−H(x)
=

h(x)

H(log b)−H(x)

Now let rk(x) =
h(x)

k−H(x) . We wish to show that r′k(x) > 0 for k ∈ (0, 1) and x such that H(x) < k. We have

r′k(x) =
h′(x)

k −H(x)
+

(
h(x)

k −H(x)

)2

=
1

(k −H(x))2
[
h′(x)(k −H(x)) + (h(x))2

]
Since the normal distribution has increasing hazard rate, we know that r′1(x) > 0, so h′(x)(1 − H(x)) +
(h(x))2 > 0. If h′(x) < 0, we have h′(x)(k−H(x)) + (h(x))2 > h′(x)(1−H(x)) + (h(x))2 > 0, so r′k(x) > 0,
as desired. The same is true by inspection if h′(x) > 0. ■
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A.3 Figures for Section 7

A.3.1 Prices, Fixed Belief About σ
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A.3.2 Purchase Probabilities, Fixed Belief About σ
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A.3.3 Prices, Varying Belief About σ
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A.3.4 Purchase Probabilities, Varying Belief About σ
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A.4 Calculating the Split of Surplus for the Structural Estimation

To calculate the split of surplus, we perform the following steps.
First, note that

V = V buyer + V seller + C +D

where V is total surplus, V i is the surplus to i ∈ {buyer, seller}, C is value lost to depreciation and D is
value lost to discounting.

Then, we know that

V buyer =

T∑
t=1

[E[v|vt < v ≤ vt−1]−Offert]Pr(n = t)(
λ

λ+ r + x
)t

V seller =

T∑
t=1

[Offert]Pr(n = t)(
λ

λ+ r
)t

C +D =

T∑
t=1

[(1− (
λ

λ+ r + x
)t)E[v|vt < v ≤ vt−1] + (1− (

λ

λ+ r
)t)Offert]Pr(n = t)

C =

T∑
t=1

[(1− (
λ

λ+ r
)t)E[v|vt < v ≤ vt−1] + (1− (

λ

λ+ r
)t)Offert]Pr(n = t)

Note that the difference between C and C + D is that x is set to 0 when calculating the amount lost
to discounting. Combined, these equations can be used to solve for the percent due to each portion of the
surplus.

A.5 Empirical Distribution of the Ending Round, Structural Estimation

Table A3: Number of Observations in Each Stage-Period

Round Stage 1 Stage 2 Stage 3

1 13 26 5
2 4 24 9
3 3 6 15
4 1 1 10
5 0 0 6
6 0 2 4
7 0 1 1
8 0 0 0
9 0 0 1
10 0 0 1
11 0 0 2
12 0 0 1
13 1 0 0
14 0 0 1
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