Skip to main content

Deforestation Spillovers from Costa Rican Protected Areas

Juan Robalino, Alexander Pfaff, Laura Villalobos
LACEEP Working Paper Series WP78

Robalino-et-al-Park-Spillovers-LACEEP-WP78.Spillovers can significantly reduce or enhance the effects of land-use policies, yet there exists little rigorous evidence concerning their magnitudes. We examine how national parks within Costa Rica affect the clearing of forest nearby. We find that average deforestation spillover impacts are not significant within 0-5km and 5-10km rings around parks. However, we argue that this average blends multiple spillover effects, each of which is likely to vary in magnitude across the landscape, yielding varied net effects. We distinguish these effects using distances to roads and park entrances, given the importance of transport costs and, for Costa Rica, tourism. We find large and statistically significant leakage close to roads in areas without tourism, i.e., far from the park entrances. In contrast, no leakage is found far from roads or close to park entrances. In sum, the combination of low transport costs and low returns to forest is conducive to deforestation leakage around the parks.


Protected area types, strategies and impacts in Brazil’s Amazon: public PA strategies do not yield a consistent ranking of PA types by impact

Alexander Pfaff, Juan Robalino, Catalina Sandoval, Diego Herrera
Philosophical Transactions B 2015 volume 370 (online

PDF link iconThe leading policy to conserve forest is protected areas (PAs). Yet, they are not a single tool: land users and uses vary by PA type; and public PA strategies vary in the extent of each type, as well as in the determinants of impact for each type, i.e. siting and internal deforestation. Further, across regions and time, strategies respond to pressures (deforestation and political).We estimate deforestation impacts of PA types for a critical frontier, the Brazilian Amazon. We separate regions and time periods that differ in their deforestation and political pressures and document considerable variation in PA strategies across regions, time periods and types. The siting of PAs varies across regions. For example, all else being equal, PAs in the arc of deforestation are relatively far from non-forest, while in other states they are relatively near. Internal deforestation varies across time periods, e.g. it is more similar across the PAtypes for PAs after 2000. By contrast, after 2000, PA extent is less similar across PA types with little non-indigenous area created inside the arc. PA strategies generate a range of impacts for PA types—always far higher within the arc—but not a consistent ranking of PA types by impact.


Protected Areas’ Impacts on Brazilian Amazon Deforestation: examining conservation – development interactions to inform planning

Alexander Pfaff, Juan Robalino, Diego Herrera, Catalina Sandoval
PLOS ONE 2015 (forthcoming) DOI:10.1371/journal.pone.0129460

PDF link iconProtected areas are the leading forest conservation policy for species and ecoservices goals and they may feature in climate policy if countries with tropical forest rely on familiar tools. For Brazil’s Legal Amazon, we estimate the average impact of protection upon deforestation and show how protected areas’ forest impacts vary significantly with development pressure.We use matching, i.e., comparisons that are apples-to-apples in observed land characteristics, to address the fact that protected areas (PAs) tend to be located on lands facing less pressure. Correcting for that location bias lowers our estimates of PAs’ forest impacts by roughly half. Further, it reveals significant variation in PA impacts along development-related dimensions: for example, the PAs that are closer to roads and the PAs closer to cities have higher impact. Planners have multiple conservation and development goals, and are constrained by cost, yet still conservation planning should reflect what our results imply about future impacts of PAs.


Evaluating Interactions of Forest Conservation Policies on Avoided Deforestation

Juan Robalino, Catalina Sandoval, David N. Barton, Adriana Chacon, Alexander Pfaff
PLoS ONE 10(4):e0124910 (2015) doi:10.1371/journal.pone.0124910

PDF link iconWe estimate the effects on deforestation that have resulted from policy interactions between parks and payments and between park buffers and payments in Costa Rica between 2000 and 2005. We show that the characteristics of the areas where protected and unprotected lands are located differ significantly. Additionally, we find that land characteristics of each of the policies and of the places where they interact also differ significantly. To adequately estimate the effects of the policies and their interactions, we use matching methods. Matching is implemented not only to define adequate control groups, as in previous research, but also to define those groups of locations under the influence of policies that are comparable to each other. We find that it is more effective to locate parks and payments away from each other, rather than in the same location or near each other. The high levels of enforcement inside both parks and lands with payments, and the presence of conservation spillovers that reduce deforestation near parks, significantly reduce the potential impact of combining these two policies.


Governance, Location and Avoided Deforestation from Protected Areas: greater restrictions can have lower impact, due to differences in location

Alexander Pfaff, Juan Robalino, Eirivelthon Lima, Catalina Sandoval, Diego Herrera
World Development 2014 volume 55, pp. 7–20

PDF link iconFor Acre, in the Brazilian Amazon, we find that protection types with differences in governance, including different constraints on local economic development, also differ in their locations. Taking this into account, we estimate the deforestation impacts of these protection types that feature different levels of restrictions. To avoid bias, we compare these protected locations with unprotected locations that are similar in their characteristics relevant for deforestation. We find that sustainable use protection, whose governance permits some local deforestation, is found on sites with high clearing threat. That allows more avoided deforestation than from integral protection, which bans clearing but seems feasible only further from deforestation threats. Based on our results, it seems that the political economy involved in siting such restrictions on production is likely to affect the ability of protected areas to reduce emissions from  deforestation and degradation.


Protecting forests, biodiversity, and the climate: predicting policy impact to improve policy choice

Alexander Pfaff, Juan Robalino
Oxford Review of Economic Policy, Volume 28, Number 1, 2012, pp. 164–179

PDF link iconPolicies must balance forest conservation’s local costs with its benefits—local to global—in terms of biodiversity, the mitigation of climate change, and other eco-services such as water quality. The trade-offs with development vary across forest locations. We argue that considering location in three ways helps to predict policy impact and improve policy choice: (i) policy impacts vary by location because baseline deforestation varies with characteristics (market distances, slopes, soils, etc.) of locations in a landscape; (ii) different mixes of political-economic pressures drive the location of different policies; and (iii) policies can trigger ‘second-order’ or ‘spillover’ effects likely to differ by location. We provide empirical evidence that suggests the importance of all three considerations, by reviewing highquality evaluations of the impact of conservation and development on forest. Impacts of well-enforced conservation rise with private clearing pressure, supporting (i). Protection types (e.g. federal/state) differ in locations and thus in impacts, supporting (ii). Differences in development process explain different signs for spillovers, supporting (iii).


Reassessing the forest impacts of protection: The challenge of nonrandom location and a corrective method

Lucas Joppa, Alexander Pfaff
Ann. N.Y. Acad. Sci. 1185 (2010) 135–149

PDF link iconProtected areas are leading tools in efforts to slow global species loss and appear also to have a role in climate change policy. Understanding their impacts on deforestation informs environmental policies. We review several approaches to evaluating protection’s impact on deforestation, given three hurdles to empirical evaluation, and note that “matching” techniques fromeconomic impact evaluation address those hurdles. The central hurdle derives from the fact that protected areas are distributed nonrandomly across landscapes.Nonrandom location can be intentional, and for good reasons, including biological and political ones. Yet even so, when protected areas are biased in their locations toward less-threatened areas, many methods for impact evaluationwill overestimate protection’s effect. The use ofmatching techniques allows one to control for known landscape biases when inferring the impact of protection. Applications of matching have revealed considerably lower impact estimates of forest protection than produced by other methods. A reduction in the estimated impact from existing parks does not suggest, however, that protection is unable to lower clearing. Rather, it indicates the importance of variation across locations in how much impact protection could possibly have on rates of deforestation.Matching, then, bundles improved estimates of the average impact of protection with guidance on where new parks’ impacts will be highest.While many factors will determine where new protected areas will be sited in the future, we claim that the variation across space in protection’s impact on deforestation rates should inform site choice.


Park Location Affects Forest Protection: Land Characteristics Cause Differences in Park Impacts across Costa Rica

Alexander Pfaff, Juan Robalino, G. Arturo Sanchez-Azofeifa, Kwaw S. Andam, Paul J. Ferraro
The B.E. Journal of Economic Analysis & Policy: Vol. 9: Iss. 2 (Contributions), Article 5.

PDF link iconTo support conservation planning, we ask whether a park’s impact on deforestation rates varies with observable land characteristics that planners could use to prioritize sites. Using matching methods to address bias from non-random location, we find deforestation impacts vary greatly due to park lands’ characteristics. Avoided deforestation is greater if parks are closer to the  capital city, in sites closer to national roads, and on lower slopes. In allocating scarce conservation resources, policy makers may consider many factors such as the ecosystem services provided by a site and the costs of acquiring the site. Pfaff and Sanchez 2004 claim impact can rise with a focus upon threatened land, all else equal. We provide empirical support in the context of Costa Rica’s renowned park system. This insight, alongside information on eco-services and land costs, should guide investments.


Human choices and policies’ impacts on ecosystem services: improving evaluations of payment and park effects on conservation and carbon

Alexander Pfaff, Juan Robalino
Engel, S. and C. Palmer, editors, “Avoided Deforestation: Prospects for Mitigating Climate Change”, Routledge Explorations in Environmental Economics 2009

PDF link iconThis chapter conveys why human choices complicate correct evaluations of impacts. Unobservable land choices, choices affecting policy location and interactions among choices complicate both ex post impact evaluation and ex ante policy planning. Based on application of proper methods to Costa Rica, we then suggest how these hurdles can best be addressed. We provide examples of: how a best practice deforestation baseline rightly conveys the constraints on the impact the pioneering Costa Rican eco-payments programme could have; why it may be critical to have different baselines for different locations to correctly infer the impacts of Costa Rican protected areas; and how choices by conservation agencies and landowners can determine the bias within heretofore typical approaches to impact evaluation.


Measuring the effectiveness of protected-area networks in reducing deforestation

Kwaw Andam, Paul Ferraro, Alexander Pfaff, Juan Robalino, G. Arturo Sanchez-Azofeifa
PNAS 105(42):16089-16094

PDF link iconGlobal efforts to reduce tropical deforestation rely heavily on the establishment of protected areas. Measuring the effectiveness of these areas is difficult because the amount of deforestation that would have occurred in the absence of legal protection cannot be directly observed. Conventional methods of evaluating the effectiveness of protected areas can be biased because protection is not randomly assigned and because protection can induce deforestation spillovers (displacement) to neighboring forests. We demonstrate that estimates of effectiveness can be substantially improved by controlling for biases along dimensions that are observable, measuring spatial spillovers, and testing the sensitivity of estimates to potential hidden biases. We apply matching methods to evaluate the impact on deforestation of Costa Rica’s renowned protected-area system between 1960 and 1997. We find that protection reduced deforestation: approximately 10% of the protected forests would have been deforested had they not been protected. Conventional approaches to evaluating conservation impact, which fail to control for observable covariates correlated with both protection and deforestation, substantially overestimate avoided deforestation (by over 65%, based on our estimates). We also find that deforestation spillovers from protected to unprotected forests are negligible. Our conclusions are robust to potential hidden bias, as well as to changes in modeling assumptions. Our results show that, with appropriate empirical methods, conservation scientists and policy makers can better understand the relationships between human and natural systems and can use this to guide their attempts to protect critical ecosystem services.


Costa Rica’s Payment for Environmental Services Program: Intention, Implementation, and Impact

G. Arturo Sanchez-Azofeifa, Alexander Pfaff, Juan Robalino, Judson Boomhower
Conservation Biology 2007 volume 21, number 5, 1165–1173

PDF link iconWe evaluated the intention, implementation, and impact of Costa Rica’s program of payments for environmental services (PSA), which was established in the late 1990s. Payments are given to private landowners who own land in forest areas in recognition of the ecosystem services their land provides. To characterize the distribution of PSA in Costa Rica, we combined remote sensing with geographic information system databases and then used econometrics to explore the impacts of payments on deforestation. Payments were distributed broadly across ecological and socioeconomic gradients, but the 1997–2000 deforestation rate was not significantly lower in areas that received payments. Other successful Costa Rican conservation policies, including those prior to the PSA program, may explain the current reduction in deforestation rates. The PSA program is a major advance in the global institutionalization of ecosystem investments because few, if any, other countries have such a conservation history and because much can be learned from Costa Rica’s experiences.


Deforestation pressure and biological reserve planning: a conceptual approach and an illustrative application for Costa Rica

Alexander Pfaff, G. Arturo Sanchez-Azofeifa
Resource and Energy Economics 26 (2004) 237–254

PDF link iconAn index of ‘deforestation pressure’ is suggested as useful for reserve planning alongside the currently used information on the species present at candidate sites. For any location, the index value is correlated with threats to habitat and thus also survival probabilities over time for members of species dependent on that habitat. Threats in the absence of reserves are key information for planning new reserves. The index is estimated using a regression approach derived from a dynamic, micro-economic model of land use, with data on observed clearing of forest over space and time as well as biophysical and socioeconomic factors in land returns. Applying an estimated threat (or probability of clearing) function for Costa Rica to locations of interest yields relevant estimates of sites’ deforestation pressure, which are used to evaluate proposed reserves and to suggest other candidate sites.